Step |
Hyp |
Ref |
Expression |
1 |
|
2sqreunnltlem |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
2 |
1
|
ex |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 mod 4 ) = 1 → ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
3 |
|
2reu2rex |
⊢ ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
4 |
|
eqeq2 |
⊢ ( 𝑃 = 2 → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ↔ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 2 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑃 = 2 ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ↔ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 2 ) ) |
6 |
|
nnnn0 |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℕ0 ) |
7 |
|
nnnn0 |
⊢ ( 𝑏 ∈ ℕ → 𝑏 ∈ ℕ0 ) |
8 |
|
2sq2 |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 2 ↔ ( 𝑎 = 1 ∧ 𝑏 = 1 ) ) ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 2 ↔ ( 𝑎 = 1 ∧ 𝑏 = 1 ) ) ) |
10 |
|
breq12 |
⊢ ( ( 𝑎 = 1 ∧ 𝑏 = 1 ) → ( 𝑎 < 𝑏 ↔ 1 < 1 ) ) |
11 |
|
1re |
⊢ 1 ∈ ℝ |
12 |
11
|
ltnri |
⊢ ¬ 1 < 1 |
13 |
12
|
pm2.21i |
⊢ ( 1 < 1 → ( 𝑃 mod 4 ) = 1 ) |
14 |
10 13
|
syl6bi |
⊢ ( ( 𝑎 = 1 ∧ 𝑏 = 1 ) → ( 𝑎 < 𝑏 → ( 𝑃 mod 4 ) = 1 ) ) |
15 |
9 14
|
syl6bi |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 2 → ( 𝑎 < 𝑏 → ( 𝑃 mod 4 ) = 1 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝑃 = 2 ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 2 → ( 𝑎 < 𝑏 → ( 𝑃 mod 4 ) = 1 ) ) ) |
17 |
5 16
|
sylbid |
⊢ ( ( 𝑃 = 2 ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 → ( 𝑎 < 𝑏 → ( 𝑃 mod 4 ) = 1 ) ) ) |
18 |
17
|
impcomd |
⊢ ( ( 𝑃 = 2 ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 mod 4 ) = 1 ) ) |
19 |
18
|
rexlimdvva |
⊢ ( 𝑃 = 2 → ( ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 mod 4 ) = 1 ) ) |
20 |
3 19
|
syl5 |
⊢ ( 𝑃 = 2 → ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 mod 4 ) = 1 ) ) |
21 |
20
|
a1d |
⊢ ( 𝑃 = 2 → ( 𝑃 ∈ ℙ → ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 mod 4 ) = 1 ) ) ) |
22 |
|
nnssz |
⊢ ℕ ⊆ ℤ |
23 |
|
id |
⊢ ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) |
24 |
23
|
eqcomd |
⊢ ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 → 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
26 |
25
|
reximi |
⊢ ( ∃ 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃ 𝑏 ∈ ℕ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
27 |
26
|
reximi |
⊢ ( ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
28 |
|
ssrexv |
⊢ ( ℕ ⊆ ℤ → ( ∃ 𝑏 ∈ ℕ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) ) |
29 |
22 28
|
ax-mp |
⊢ ( ∃ 𝑏 ∈ ℕ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
30 |
29
|
reximi |
⊢ ( ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
31 |
3 27 30
|
3syl |
⊢ ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
32 |
|
ssrexv |
⊢ ( ℕ ⊆ ℤ → ( ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) ) |
33 |
22 31 32
|
mpsyl |
⊢ ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
35 |
|
2sqb |
⊢ ( 𝑃 ∈ ℙ → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ↔ ( 𝑃 = 2 ∨ ( 𝑃 mod 4 ) = 1 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ↔ ( 𝑃 = 2 ∨ ( 𝑃 mod 4 ) = 1 ) ) ) |
37 |
34 36
|
mpbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) → ( 𝑃 = 2 ∨ ( 𝑃 mod 4 ) = 1 ) ) |
38 |
37
|
ord |
⊢ ( ( 𝑃 ∈ ℙ ∧ ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) → ( ¬ 𝑃 = 2 → ( 𝑃 mod 4 ) = 1 ) ) |
39 |
38
|
expcom |
⊢ ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 ∈ ℙ → ( ¬ 𝑃 = 2 → ( 𝑃 mod 4 ) = 1 ) ) ) |
40 |
39
|
com13 |
⊢ ( ¬ 𝑃 = 2 → ( 𝑃 ∈ ℙ → ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 mod 4 ) = 1 ) ) ) |
41 |
21 40
|
pm2.61i |
⊢ ( 𝑃 ∈ ℙ → ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 mod 4 ) = 1 ) ) |
42 |
2 41
|
impbid |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 mod 4 ) = 1 ↔ ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |