Step |
Hyp |
Ref |
Expression |
1 |
|
2sqreunnlem1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
2 |
|
oveq1 |
⊢ ( 𝑏 = 𝑎 → ( 𝑏 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑏 = 𝑎 → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝑏 = 𝑎 ∧ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) ) |
5 |
|
nncn |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℂ ) |
6 |
5
|
sqcld |
⊢ ( 𝑎 ∈ ℕ → ( 𝑎 ↑ 2 ) ∈ ℂ ) |
7 |
|
2times |
⊢ ( ( 𝑎 ↑ 2 ) ∈ ℂ → ( 2 · ( 𝑎 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) ) |
8 |
7
|
eqcomd |
⊢ ( ( 𝑎 ↑ 2 ) ∈ ℂ → ( ( 𝑎 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 2 · ( 𝑎 ↑ 2 ) ) ) |
9 |
6 8
|
syl |
⊢ ( 𝑎 ∈ ℕ → ( ( 𝑎 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 2 · ( 𝑎 ↑ 2 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 2 · ( 𝑎 ↑ 2 ) ) ) |
11 |
10
|
ad2antrl |
⊢ ( ( 𝑏 = 𝑎 ∧ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ) → ( ( 𝑎 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 2 · ( 𝑎 ↑ 2 ) ) ) |
12 |
4 11
|
eqtrd |
⊢ ( ( 𝑏 = 𝑎 ∧ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 2 · ( 𝑎 ↑ 2 ) ) ) |
13 |
12
|
eqeq1d |
⊢ ( ( 𝑏 = 𝑎 ∧ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ↔ ( 2 · ( 𝑎 ↑ 2 ) ) = 𝑃 ) ) |
14 |
|
oveq1 |
⊢ ( 𝑃 = ( 2 · ( 𝑎 ↑ 2 ) ) → ( 𝑃 mod 4 ) = ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑃 = ( 2 · ( 𝑎 ↑ 2 ) ) → ( ( 𝑃 mod 4 ) = 1 ↔ ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 1 ) ) |
16 |
|
eleq1 |
⊢ ( 𝑃 = ( 2 · ( 𝑎 ↑ 2 ) ) → ( 𝑃 ∈ ℙ ↔ ( 2 · ( 𝑎 ↑ 2 ) ) ∈ ℙ ) ) |
17 |
15 16
|
anbi12d |
⊢ ( 𝑃 = ( 2 · ( 𝑎 ↑ 2 ) ) → ( ( ( 𝑃 mod 4 ) = 1 ∧ 𝑃 ∈ ℙ ) ↔ ( ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 1 ∧ ( 2 · ( 𝑎 ↑ 2 ) ) ∈ ℙ ) ) ) |
18 |
|
nnz |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℤ ) |
19 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
20 |
|
zexpcl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 2 ∈ ℕ0 ) → ( 𝑎 ↑ 2 ) ∈ ℤ ) |
21 |
18 19 20
|
sylancl |
⊢ ( 𝑎 ∈ ℕ → ( 𝑎 ↑ 2 ) ∈ ℤ ) |
22 |
|
2mulprm |
⊢ ( ( 𝑎 ↑ 2 ) ∈ ℤ → ( ( 2 · ( 𝑎 ↑ 2 ) ) ∈ ℙ ↔ ( 𝑎 ↑ 2 ) = 1 ) ) |
23 |
21 22
|
syl |
⊢ ( 𝑎 ∈ ℕ → ( ( 2 · ( 𝑎 ↑ 2 ) ) ∈ ℙ ↔ ( 𝑎 ↑ 2 ) = 1 ) ) |
24 |
|
oveq2 |
⊢ ( ( 𝑎 ↑ 2 ) = 1 → ( 2 · ( 𝑎 ↑ 2 ) ) = ( 2 · 1 ) ) |
25 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
26 |
24 25
|
eqtrdi |
⊢ ( ( 𝑎 ↑ 2 ) = 1 → ( 2 · ( 𝑎 ↑ 2 ) ) = 2 ) |
27 |
26
|
oveq1d |
⊢ ( ( 𝑎 ↑ 2 ) = 1 → ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = ( 2 mod 4 ) ) |
28 |
|
2re |
⊢ 2 ∈ ℝ |
29 |
|
4nn |
⊢ 4 ∈ ℕ |
30 |
|
nnrp |
⊢ ( 4 ∈ ℕ → 4 ∈ ℝ+ ) |
31 |
29 30
|
ax-mp |
⊢ 4 ∈ ℝ+ |
32 |
|
0le2 |
⊢ 0 ≤ 2 |
33 |
|
2lt4 |
⊢ 2 < 4 |
34 |
|
modid |
⊢ ( ( ( 2 ∈ ℝ ∧ 4 ∈ ℝ+ ) ∧ ( 0 ≤ 2 ∧ 2 < 4 ) ) → ( 2 mod 4 ) = 2 ) |
35 |
28 31 32 33 34
|
mp4an |
⊢ ( 2 mod 4 ) = 2 |
36 |
27 35
|
eqtrdi |
⊢ ( ( 𝑎 ↑ 2 ) = 1 → ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 2 ) |
37 |
36
|
eqeq1d |
⊢ ( ( 𝑎 ↑ 2 ) = 1 → ( ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 1 ↔ 2 = 1 ) ) |
38 |
|
1ne2 |
⊢ 1 ≠ 2 |
39 |
|
eqcom |
⊢ ( 2 = 1 ↔ 1 = 2 ) |
40 |
|
eqneqall |
⊢ ( 1 = 2 → ( 1 ≠ 2 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
41 |
40
|
com12 |
⊢ ( 1 ≠ 2 → ( 1 = 2 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
42 |
39 41
|
syl5bi |
⊢ ( 1 ≠ 2 → ( 2 = 1 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
43 |
38 42
|
ax-mp |
⊢ ( 2 = 1 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) |
44 |
37 43
|
syl6bi |
⊢ ( ( 𝑎 ↑ 2 ) = 1 → ( ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 1 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
45 |
23 44
|
syl6bi |
⊢ ( 𝑎 ∈ ℕ → ( ( 2 · ( 𝑎 ↑ 2 ) ) ∈ ℙ → ( ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 1 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) ) |
46 |
45
|
impcomd |
⊢ ( 𝑎 ∈ ℕ → ( ( ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 1 ∧ ( 2 · ( 𝑎 ↑ 2 ) ) ∈ ℙ ) → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
47 |
46
|
com12 |
⊢ ( ( ( ( 2 · ( 𝑎 ↑ 2 ) ) mod 4 ) = 1 ∧ ( 2 · ( 𝑎 ↑ 2 ) ) ∈ ℙ ) → ( 𝑎 ∈ ℕ → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
48 |
17 47
|
syl6bi |
⊢ ( 𝑃 = ( 2 · ( 𝑎 ↑ 2 ) ) → ( ( ( 𝑃 mod 4 ) = 1 ∧ 𝑃 ∈ ℙ ) → ( 𝑎 ∈ ℕ → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) ) |
49 |
48
|
expd |
⊢ ( 𝑃 = ( 2 · ( 𝑎 ↑ 2 ) ) → ( ( 𝑃 mod 4 ) = 1 → ( 𝑃 ∈ ℙ → ( 𝑎 ∈ ℕ → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) ) ) |
50 |
49
|
com34 |
⊢ ( 𝑃 = ( 2 · ( 𝑎 ↑ 2 ) ) → ( ( 𝑃 mod 4 ) = 1 → ( 𝑎 ∈ ℕ → ( 𝑃 ∈ ℙ → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) ) ) |
51 |
50
|
eqcoms |
⊢ ( ( 2 · ( 𝑎 ↑ 2 ) ) = 𝑃 → ( ( 𝑃 mod 4 ) = 1 → ( 𝑎 ∈ ℕ → ( 𝑃 ∈ ℙ → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) ) ) |
52 |
51
|
com14 |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 mod 4 ) = 1 → ( 𝑎 ∈ ℕ → ( ( 2 · ( 𝑎 ↑ 2 ) ) = 𝑃 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) ) ) |
53 |
52
|
imp31 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) → ( ( 2 · ( 𝑎 ↑ 2 ) ) = 𝑃 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
54 |
53
|
ad2antrl |
⊢ ( ( 𝑏 = 𝑎 ∧ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ) → ( ( 2 · ( 𝑎 ↑ 2 ) ) = 𝑃 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
55 |
13 54
|
sylbid |
⊢ ( ( 𝑏 = 𝑎 ∧ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
56 |
55
|
expimpd |
⊢ ( 𝑏 = 𝑎 → ( ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
57 |
|
2a1 |
⊢ ( 𝑏 ≠ 𝑎 → ( ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) ) |
58 |
56 57
|
pm2.61ine |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑎 ≤ 𝑏 → 𝑏 ≠ 𝑎 ) ) |
59 |
58
|
pm4.71d |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≠ 𝑎 ) ) ) |
60 |
|
nnre |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℝ ) |
61 |
60
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) → 𝑎 ∈ ℝ ) |
62 |
|
nnre |
⊢ ( 𝑏 ∈ ℕ → 𝑏 ∈ ℝ ) |
63 |
|
ltlen |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 < 𝑏 ↔ ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≠ 𝑎 ) ) ) |
64 |
61 62 63
|
syl2an |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) → ( 𝑎 < 𝑏 ↔ ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≠ 𝑎 ) ) ) |
65 |
64
|
bibi2d |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) → ( ( 𝑎 ≤ 𝑏 ↔ 𝑎 < 𝑏 ) ↔ ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≠ 𝑎 ) ) ) ) |
66 |
65
|
adantr |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( ( 𝑎 ≤ 𝑏 ↔ 𝑎 < 𝑏 ) ↔ ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≠ 𝑎 ) ) ) ) |
67 |
59 66
|
mpbird |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑎 ≤ 𝑏 ↔ 𝑎 < 𝑏 ) ) |
68 |
67
|
ex |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 → ( 𝑎 ≤ 𝑏 ↔ 𝑎 < 𝑏 ) ) ) |
69 |
68
|
pm5.32rd |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ℕ ) → ( ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
70 |
69
|
reubidva |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ ) → ( ∃! 𝑏 ∈ ℕ ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
71 |
70
|
reubidva |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
72 |
1 71
|
mpbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |