Metamath Proof Explorer


Theorem 2strop1

Description: The other slot of a constructed two-slot structure. Version of 2strop not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020)

Ref Expression
Hypotheses 2str1.g 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ 𝑁 , + ⟩ }
2str1.b ( Base ‘ ndx ) < 𝑁
2str1.n 𝑁 ∈ ℕ
2str1.e 𝐸 = Slot 𝑁
Assertion 2strop1 ( +𝑉+ = ( 𝐸𝐺 ) )

Proof

Step Hyp Ref Expression
1 2str1.g 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ 𝑁 , + ⟩ }
2 2str1.b ( Base ‘ ndx ) < 𝑁
3 2str1.n 𝑁 ∈ ℕ
4 2str1.e 𝐸 = Slot 𝑁
5 1 2 3 2strstr1 𝐺 Struct ⟨ ( Base ‘ ndx ) , 𝑁
6 4 3 ndxid 𝐸 = Slot ( 𝐸 ‘ ndx )
7 snsspr2 { ⟨ 𝑁 , + ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ 𝑁 , + ⟩ }
8 4 3 ndxarg ( 𝐸 ‘ ndx ) = 𝑁
9 8 opeq1i ⟨ ( 𝐸 ‘ ndx ) , + ⟩ = ⟨ 𝑁 , +
10 9 sneqi { ⟨ ( 𝐸 ‘ ndx ) , + ⟩ } = { ⟨ 𝑁 , + ⟩ }
11 7 10 1 3sstr4i { ⟨ ( 𝐸 ‘ ndx ) , + ⟩ } ⊆ 𝐺
12 5 6 11 strfv ( +𝑉+ = ( 𝐸𝐺 ) )