Metamath Proof Explorer


Theorem 2sumeq2dv

Description: Equality deduction for double sum. (Contributed by NM, 3-Jan-2006) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypothesis 2sumeq2dv.1 ( ( 𝜑𝑗𝐴𝑘𝐵 ) → 𝐶 = 𝐷 )
Assertion 2sumeq2dv ( 𝜑 → Σ 𝑗𝐴 Σ 𝑘𝐵 𝐶 = Σ 𝑗𝐴 Σ 𝑘𝐵 𝐷 )

Proof

Step Hyp Ref Expression
1 2sumeq2dv.1 ( ( 𝜑𝑗𝐴𝑘𝐵 ) → 𝐶 = 𝐷 )
2 1 3expa ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 = 𝐷 )
3 2 sumeq2dv ( ( 𝜑𝑗𝐴 ) → Σ 𝑘𝐵 𝐶 = Σ 𝑘𝐵 𝐷 )
4 3 sumeq2dv ( 𝜑 → Σ 𝑗𝐴 Σ 𝑘𝐵 𝐶 = Σ 𝑗𝐴 Σ 𝑘𝐵 𝐷 )