Description: Equality deduction for double sum. (Contributed by NM, 3-Jan-2006) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2sumeq2dv.1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 = 𝐷 ) | |
| Assertion | 2sumeq2dv | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐷 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2sumeq2dv.1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 = 𝐷 ) | |
| 2 | 1 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 = 𝐷 ) | 
| 3 | 2 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ 𝐵 𝐷 ) | 
| 4 | 3 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐷 ) |