| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termoeu1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 2 |
|
termoeu1.a |
⊢ ( 𝜑 → 𝐴 ∈ ( TermO ‘ 𝐶 ) ) |
| 3 |
|
termoeu1.b |
⊢ ( 𝜑 → 𝐵 ∈ ( TermO ‘ 𝐶 ) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 5 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 6 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 7 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐶 ∈ Cat ) |
| 8 |
|
termoo |
⊢ ( 𝐶 ∈ Cat → ( 𝐴 ∈ ( TermO ‘ 𝐶 ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) |
| 9 |
1 2 8
|
sylc |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
| 11 |
|
termoo |
⊢ ( 𝐶 ∈ Cat → ( 𝐵 ∈ ( TermO ‘ 𝐶 ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) |
| 12 |
1 3 11
|
sylc |
⊢ ( 𝜑 → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
| 13 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
| 14 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) |
| 15 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
| 16 |
4 5 6 7 10 13 10 14 15
|
catcocl |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
| 17 |
4 5 1
|
termoid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝐴 ( Hom ‘ 𝐶 ) 𝐴 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) } ) |
| 18 |
2 17
|
mpdan |
⊢ ( 𝜑 → ( 𝐴 ( Hom ‘ 𝐶 ) 𝐴 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) } ) |
| 19 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐴 ( Hom ‘ 𝐶 ) 𝐴 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) } ) |
| 20 |
19
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐴 ) ↔ ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) ∈ { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) } ) ) |
| 21 |
|
elsni |
⊢ ( ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) ∈ { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) } → ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) ) |
| 22 |
20 21
|
biimtrdi |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐴 ) → ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
| 23 |
16 22
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) ) |
| 24 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 25 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
| 26 |
4 5 6 24 25 7 10 13 14 15
|
issect2 |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐹 ( 𝐴 ( Sect ‘ 𝐶 ) 𝐵 ) 𝐺 ↔ ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
| 27 |
23 26
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐹 ( 𝐴 ( Sect ‘ 𝐶 ) 𝐵 ) 𝐺 ) |
| 28 |
4 5 6 7 13 10 13 15 14
|
catcocl |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐵 ) ) |
| 29 |
4 5 1
|
termoid |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝐵 ( Hom ‘ 𝐶 ) 𝐵 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) } ) |
| 30 |
3 29
|
mpdan |
⊢ ( 𝜑 → ( 𝐵 ( Hom ‘ 𝐶 ) 𝐵 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) } ) |
| 31 |
30
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐵 ( Hom ‘ 𝐶 ) 𝐵 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) } ) |
| 32 |
31
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐵 ) ↔ ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) ∈ { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) } ) ) |
| 33 |
|
elsni |
⊢ ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) ∈ { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) } → ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) ) |
| 34 |
32 33
|
biimtrdi |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐵 ) → ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) ) ) |
| 35 |
28 34
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) ) |
| 36 |
4 5 6 24 25 7 13 10 15 14
|
issect2 |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐺 ( 𝐵 ( Sect ‘ 𝐶 ) 𝐴 ) 𝐹 ↔ ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) ) ) |
| 37 |
35 36
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐺 ( 𝐵 ( Sect ‘ 𝐶 ) 𝐴 ) 𝐹 ) |
| 38 |
|
eqid |
⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) |
| 39 |
4 38 1 9 12 25
|
isinv |
⊢ ( 𝜑 → ( 𝐹 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝐺 ↔ ( 𝐹 ( 𝐴 ( Sect ‘ 𝐶 ) 𝐵 ) 𝐺 ∧ 𝐺 ( 𝐵 ( Sect ‘ 𝐶 ) 𝐴 ) 𝐹 ) ) ) |
| 40 |
39
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐹 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝐺 ↔ ( 𝐹 ( 𝐴 ( Sect ‘ 𝐶 ) 𝐵 ) 𝐺 ∧ 𝐺 ( 𝐵 ( Sect ‘ 𝐶 ) 𝐴 ) 𝐹 ) ) ) |
| 41 |
27 37 40
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐹 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝐺 ) |