Metamath Proof Explorer


Theorem 2timesgt

Description: Double of a positive real is larger than the real itself. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion 2timesgt ( 𝐴 ∈ ℝ+𝐴 < ( 2 · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 rpre ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ )
2 id ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ+ )
3 1 2 ltaddrp2d ( 𝐴 ∈ ℝ+𝐴 < ( 𝐴 + 𝐴 ) )
4 rpcn ( 𝐴 ∈ ℝ+𝐴 ∈ ℂ )
5 2times ( 𝐴 ∈ ℂ → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) )
6 5 eqcomd ( 𝐴 ∈ ℂ → ( 𝐴 + 𝐴 ) = ( 2 · 𝐴 ) )
7 4 6 syl ( 𝐴 ∈ ℝ+ → ( 𝐴 + 𝐴 ) = ( 2 · 𝐴 ) )
8 3 7 breqtrd ( 𝐴 ∈ ℝ+𝐴 < ( 2 · 𝐴 ) )