| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℤ ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑘  =  𝐴  →  ( 2  ·  𝑘 )  =  ( 2  ·  𝐴 ) ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( 𝑘  =  𝐴  →  ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  𝐴 )  +  1 ) ) | 
						
							| 4 | 3 | eqeq1d | ⊢ ( 𝑘  =  𝐴  →  ( ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  𝐴 )  +  1 )  ↔  ( ( 2  ·  𝐴 )  +  1 )  =  ( ( 2  ·  𝐴 )  +  1 ) ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑘  =  𝐴 )  →  ( ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  𝐴 )  +  1 )  ↔  ( ( 2  ·  𝐴 )  +  1 )  =  ( ( 2  ·  𝐴 )  +  1 ) ) ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝐴  ∈  ℤ  →  ( ( 2  ·  𝐴 )  +  1 )  =  ( ( 2  ·  𝐴 )  +  1 ) ) | 
						
							| 7 | 1 5 6 | rspcedvd | ⊢ ( 𝐴  ∈  ℤ  →  ∃ 𝑘  ∈  ℤ ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  𝐴 )  +  1 ) ) | 
						
							| 8 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 9 | 8 | a1i | ⊢ ( 𝐴  ∈  ℤ  →  2  ∈  ℤ ) | 
						
							| 10 | 9 1 | zmulcld | ⊢ ( 𝐴  ∈  ℤ  →  ( 2  ·  𝐴 )  ∈  ℤ ) | 
						
							| 11 | 10 | peano2zd | ⊢ ( 𝐴  ∈  ℤ  →  ( ( 2  ·  𝐴 )  +  1 )  ∈  ℤ ) | 
						
							| 12 |  | odd2np1 | ⊢ ( ( ( 2  ·  𝐴 )  +  1 )  ∈  ℤ  →  ( ¬  2  ∥  ( ( 2  ·  𝐴 )  +  1 )  ↔  ∃ 𝑘  ∈  ℤ ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  𝐴 )  +  1 ) ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝐴  ∈  ℤ  →  ( ¬  2  ∥  ( ( 2  ·  𝐴 )  +  1 )  ↔  ∃ 𝑘  ∈  ℤ ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  𝐴 )  +  1 ) ) ) | 
						
							| 14 | 7 13 | mpbird | ⊢ ( 𝐴  ∈  ℤ  →  ¬  2  ∥  ( ( 2  ·  𝐴 )  +  1 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  =  ( ( 2  ·  𝐴 )  +  1 ) )  →  ¬  2  ∥  ( ( 2  ·  𝐴 )  +  1 ) ) | 
						
							| 16 |  | breq2 | ⊢ ( 𝐵  =  ( ( 2  ·  𝐴 )  +  1 )  →  ( 2  ∥  𝐵  ↔  2  ∥  ( ( 2  ·  𝐴 )  +  1 ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  =  ( ( 2  ·  𝐴 )  +  1 ) )  →  ( 2  ∥  𝐵  ↔  2  ∥  ( ( 2  ·  𝐴 )  +  1 ) ) ) | 
						
							| 18 | 15 17 | mtbird | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  =  ( ( 2  ·  𝐴 )  +  1 ) )  →  ¬  2  ∥  𝐵 ) |