Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℤ ) |
2 |
|
oveq2 |
⊢ ( 𝑘 = 𝐴 → ( 2 · 𝑘 ) = ( 2 · 𝐴 ) ) |
3 |
2
|
oveq1d |
⊢ ( 𝑘 = 𝐴 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑘 = 𝐴 → ( ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ↔ ( ( 2 · 𝐴 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑘 = 𝐴 ) → ( ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ↔ ( ( 2 · 𝐴 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ) ) |
6 |
|
eqidd |
⊢ ( 𝐴 ∈ ℤ → ( ( 2 · 𝐴 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ) |
7 |
1 5 6
|
rspcedvd |
⊢ ( 𝐴 ∈ ℤ → ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ) |
8 |
|
2z |
⊢ 2 ∈ ℤ |
9 |
8
|
a1i |
⊢ ( 𝐴 ∈ ℤ → 2 ∈ ℤ ) |
10 |
9 1
|
zmulcld |
⊢ ( 𝐴 ∈ ℤ → ( 2 · 𝐴 ) ∈ ℤ ) |
11 |
10
|
peano2zd |
⊢ ( 𝐴 ∈ ℤ → ( ( 2 · 𝐴 ) + 1 ) ∈ ℤ ) |
12 |
|
odd2np1 |
⊢ ( ( ( 2 · 𝐴 ) + 1 ) ∈ ℤ → ( ¬ 2 ∥ ( ( 2 · 𝐴 ) + 1 ) ↔ ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ) ) |
13 |
11 12
|
syl |
⊢ ( 𝐴 ∈ ℤ → ( ¬ 2 ∥ ( ( 2 · 𝐴 ) + 1 ) ↔ ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ) ) |
14 |
7 13
|
mpbird |
⊢ ( 𝐴 ∈ ℤ → ¬ 2 ∥ ( ( 2 · 𝐴 ) + 1 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 = ( ( 2 · 𝐴 ) + 1 ) ) → ¬ 2 ∥ ( ( 2 · 𝐴 ) + 1 ) ) |
16 |
|
breq2 |
⊢ ( 𝐵 = ( ( 2 · 𝐴 ) + 1 ) → ( 2 ∥ 𝐵 ↔ 2 ∥ ( ( 2 · 𝐴 ) + 1 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 = ( ( 2 · 𝐴 ) + 1 ) ) → ( 2 ∥ 𝐵 ↔ 2 ∥ ( ( 2 · 𝐴 ) + 1 ) ) ) |
18 |
15 17
|
mtbird |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 = ( ( 2 · 𝐴 ) + 1 ) ) → ¬ 2 ∥ 𝐵 ) |