| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p | ⊢ 𝑃  =  〈“ 𝐴 𝐵 𝐶 ”〉 | 
						
							| 2 |  | 2wlkd.f | ⊢ 𝐹  =  〈“ 𝐽 𝐾 ”〉 | 
						
							| 3 |  | 2wlkd.s | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) | 
						
							| 4 |  | 2wlkd.n | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 5 |  | 2wlkd.e | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ 𝐽 )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ 𝐾 ) ) ) | 
						
							| 6 |  | 2wlkd.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 7 |  | 2wlkd.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 8 |  | 2trld.n | ⊢ ( 𝜑  →  𝐽  ≠  𝐾 ) | 
						
							| 9 | 1 2 3 4 5 6 7 | 2wlkd | ⊢ ( 𝜑  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 10 | 1 2 3 4 5 | 2wlkdlem7 | ⊢ ( 𝜑  →  ( 𝐽  ∈  V  ∧  𝐾  ∈  V ) ) | 
						
							| 11 |  | df-3an | ⊢ ( ( 𝐽  ∈  V  ∧  𝐾  ∈  V  ∧  𝐽  ≠  𝐾 )  ↔  ( ( 𝐽  ∈  V  ∧  𝐾  ∈  V )  ∧  𝐽  ≠  𝐾 ) ) | 
						
							| 12 | 10 8 11 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐽  ∈  V  ∧  𝐾  ∈  V  ∧  𝐽  ≠  𝐾 ) ) | 
						
							| 13 |  | funcnvs2 | ⊢ ( ( 𝐽  ∈  V  ∧  𝐾  ∈  V  ∧  𝐽  ≠  𝐾 )  →  Fun  ◡ 〈“ 𝐽 𝐾 ”〉 ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  Fun  ◡ 〈“ 𝐽 𝐾 ”〉 ) | 
						
							| 15 | 2 | cnveqi | ⊢ ◡ 𝐹  =  ◡ 〈“ 𝐽 𝐾 ”〉 | 
						
							| 16 | 15 | funeqi | ⊢ ( Fun  ◡ 𝐹  ↔  Fun  ◡ 〈“ 𝐽 𝐾 ”〉 ) | 
						
							| 17 | 14 16 | sylibr | ⊢ ( 𝜑  →  Fun  ◡ 𝐹 ) | 
						
							| 18 |  | istrl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝐹 ) ) | 
						
							| 19 | 9 17 18 | sylanbrc | ⊢ ( 𝜑  →  𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |