Metamath Proof Explorer


Theorem 2trlond

Description: A trail of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 30-Jan-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 2wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 ”⟩
2wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 ”⟩
2wlkd.s ( 𝜑 → ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) )
2wlkd.n ( 𝜑 → ( 𝐴𝐵𝐵𝐶 ) )
2wlkd.e ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼𝐾 ) ) )
2wlkd.v 𝑉 = ( Vtx ‘ 𝐺 )
2wlkd.i 𝐼 = ( iEdg ‘ 𝐺 )
2trld.n ( 𝜑𝐽𝐾 )
Assertion 2trlond ( 𝜑𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐶 ) 𝑃 )

Proof

Step Hyp Ref Expression
1 2wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 ”⟩
2 2wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 ”⟩
3 2wlkd.s ( 𝜑 → ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) )
4 2wlkd.n ( 𝜑 → ( 𝐴𝐵𝐵𝐶 ) )
5 2wlkd.e ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼𝐾 ) ) )
6 2wlkd.v 𝑉 = ( Vtx ‘ 𝐺 )
7 2wlkd.i 𝐼 = ( iEdg ‘ 𝐺 )
8 2trld.n ( 𝜑𝐽𝐾 )
9 1 2 3 4 5 6 7 2wlkond ( 𝜑𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑃 )
10 1 2 3 4 5 6 7 8 2trld ( 𝜑𝐹 ( Trails ‘ 𝐺 ) 𝑃 )
11 3 simp1d ( 𝜑𝐴𝑉 )
12 3 simp3d ( 𝜑𝐶𝑉 )
13 s2cli ⟨“ 𝐽 𝐾 ”⟩ ∈ Word V
14 2 13 eqeltri 𝐹 ∈ Word V
15 14 a1i ( 𝜑𝐹 ∈ Word V )
16 s3cli ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ Word V
17 1 16 eqeltri 𝑃 ∈ Word V
18 17 a1i ( 𝜑𝑃 ∈ Word V )
19 6 istrlson ( ( ( 𝐴𝑉𝐶𝑉 ) ∧ ( 𝐹 ∈ Word V ∧ 𝑃 ∈ Word V ) ) → ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐶 ) 𝑃 ↔ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑃𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) )
20 11 12 15 18 19 syl22anc ( 𝜑 → ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐶 ) 𝑃 ↔ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑃𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) )
21 9 10 20 mpbir2and ( 𝜑𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐶 ) 𝑃 )