Metamath Proof Explorer


Theorem 2txmodxeq0

Description: Two times a positive real number modulo the real number is zero. (Contributed by Alexander van der Vekens, 8-Jun-2018)

Ref Expression
Assertion 2txmodxeq0 ( 𝑋 ∈ ℝ+ → ( ( 2 · 𝑋 ) mod 𝑋 ) = 0 )

Proof

Step Hyp Ref Expression
1 2cnd ( 𝑋 ∈ ℝ+ → 2 ∈ ℂ )
2 rpcn ( 𝑋 ∈ ℝ+𝑋 ∈ ℂ )
3 rpne0 ( 𝑋 ∈ ℝ+𝑋 ≠ 0 )
4 1 2 3 divcan4d ( 𝑋 ∈ ℝ+ → ( ( 2 · 𝑋 ) / 𝑋 ) = 2 )
5 2z 2 ∈ ℤ
6 4 5 eqeltrdi ( 𝑋 ∈ ℝ+ → ( ( 2 · 𝑋 ) / 𝑋 ) ∈ ℤ )
7 2re 2 ∈ ℝ
8 7 a1i ( 𝑋 ∈ ℝ+ → 2 ∈ ℝ )
9 rpre ( 𝑋 ∈ ℝ+𝑋 ∈ ℝ )
10 8 9 remulcld ( 𝑋 ∈ ℝ+ → ( 2 · 𝑋 ) ∈ ℝ )
11 mod0 ( ( ( 2 · 𝑋 ) ∈ ℝ ∧ 𝑋 ∈ ℝ+ ) → ( ( ( 2 · 𝑋 ) mod 𝑋 ) = 0 ↔ ( ( 2 · 𝑋 ) / 𝑋 ) ∈ ℤ ) )
12 10 11 mpancom ( 𝑋 ∈ ℝ+ → ( ( ( 2 · 𝑋 ) mod 𝑋 ) = 0 ↔ ( ( 2 · 𝑋 ) / 𝑋 ) ∈ ℤ ) )
13 6 12 mpbird ( 𝑋 ∈ ℝ+ → ( ( 2 · 𝑋 ) mod 𝑋 ) = 0 )