Step |
Hyp |
Ref |
Expression |
1 |
|
2cnd |
⊢ ( 𝑋 ∈ ℝ+ → 2 ∈ ℂ ) |
2 |
|
rpcn |
⊢ ( 𝑋 ∈ ℝ+ → 𝑋 ∈ ℂ ) |
3 |
|
rpne0 |
⊢ ( 𝑋 ∈ ℝ+ → 𝑋 ≠ 0 ) |
4 |
1 2 3
|
divcan4d |
⊢ ( 𝑋 ∈ ℝ+ → ( ( 2 · 𝑋 ) / 𝑋 ) = 2 ) |
5 |
|
2z |
⊢ 2 ∈ ℤ |
6 |
4 5
|
eqeltrdi |
⊢ ( 𝑋 ∈ ℝ+ → ( ( 2 · 𝑋 ) / 𝑋 ) ∈ ℤ ) |
7 |
|
2re |
⊢ 2 ∈ ℝ |
8 |
7
|
a1i |
⊢ ( 𝑋 ∈ ℝ+ → 2 ∈ ℝ ) |
9 |
|
rpre |
⊢ ( 𝑋 ∈ ℝ+ → 𝑋 ∈ ℝ ) |
10 |
8 9
|
remulcld |
⊢ ( 𝑋 ∈ ℝ+ → ( 2 · 𝑋 ) ∈ ℝ ) |
11 |
|
mod0 |
⊢ ( ( ( 2 · 𝑋 ) ∈ ℝ ∧ 𝑋 ∈ ℝ+ ) → ( ( ( 2 · 𝑋 ) mod 𝑋 ) = 0 ↔ ( ( 2 · 𝑋 ) / 𝑋 ) ∈ ℤ ) ) |
12 |
10 11
|
mpancom |
⊢ ( 𝑋 ∈ ℝ+ → ( ( ( 2 · 𝑋 ) mod 𝑋 ) = 0 ↔ ( ( 2 · 𝑋 ) / 𝑋 ) ∈ ℤ ) ) |
13 |
6 12
|
mpbird |
⊢ ( 𝑋 ∈ ℝ+ → ( ( 2 · 𝑋 ) mod 𝑋 ) = 0 ) |