Step |
Hyp |
Ref |
Expression |
1 |
|
2uasbanhVD.1 |
⊢ ( 𝜒 ↔ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) |
2 |
|
idn1 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ▶ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
3 |
|
simpl |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
4 |
2 3
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ▶ ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
5 |
|
simpr |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ( 𝜑 ∧ 𝜓 ) ) |
6 |
2 5
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ▶ ( 𝜑 ∧ 𝜓 ) ) |
7 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
8 |
6 7
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ▶ 𝜑 ) |
9 |
|
pm3.2 |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝜑 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) |
10 |
4 8 9
|
e11 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ▶ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
11 |
10
|
in1 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
12 |
11
|
eximi |
⊢ ( ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
13 |
12
|
eximi |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) |
15 |
6 14
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ▶ 𝜓 ) |
16 |
|
pm3.2 |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝜓 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) |
17 |
4 15 16
|
e11 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ▶ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) |
18 |
17
|
in1 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) |
19 |
18
|
eximi |
⊢ ( ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) |
20 |
19
|
eximi |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) |
21 |
13 20
|
jca |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) |
22 |
1
|
biimpi |
⊢ ( 𝜒 → ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) |
23 |
22
|
dfvd1ir |
⊢ ( 𝜒 ▶ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) |
24 |
|
simpl |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
25 |
23 24
|
e1a |
⊢ ( 𝜒 ▶ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
26 |
|
simpl |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
27 |
26
|
2eximi |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
28 |
25 27
|
e1a |
⊢ ( 𝜒 ▶ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
29 |
|
ax6e2ndeq |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
30 |
29
|
biimpri |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) |
31 |
28 30
|
e1a |
⊢ ( 𝜒 ▶ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) |
32 |
|
2sb5nd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) |
33 |
31 32
|
e1a |
⊢ ( 𝜒 ▶ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) |
34 |
|
biimpr |
⊢ ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
35 |
34
|
com12 |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
36 |
25 33 35
|
e11 |
⊢ ( 𝜒 ▶ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) |
37 |
|
simpr |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) |
38 |
23 37
|
e1a |
⊢ ( 𝜒 ▶ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) |
39 |
|
2sb5nd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) |
40 |
31 39
|
e1a |
⊢ ( 𝜒 ▶ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) |
41 |
|
biimpr |
⊢ ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ) ) |
42 |
41
|
com12 |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) → ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ) ) |
43 |
38 40 42
|
e11 |
⊢ ( 𝜒 ▶ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ) |
44 |
|
sban |
⊢ ( [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑣 / 𝑦 ] 𝜑 ∧ [ 𝑣 / 𝑦 ] 𝜓 ) ) |
45 |
44
|
sbbii |
⊢ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ [ 𝑢 / 𝑥 ] ( [ 𝑣 / 𝑦 ] 𝜑 ∧ [ 𝑣 / 𝑦 ] 𝜓 ) ) |
46 |
|
sban |
⊢ ( [ 𝑢 / 𝑥 ] ( [ 𝑣 / 𝑦 ] 𝜑 ∧ [ 𝑣 / 𝑦 ] 𝜓 ) ↔ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ) ) |
47 |
45 46
|
bitri |
⊢ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ) ) |
48 |
|
simplbi2comt |
⊢ ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ) ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ) ) ) |
49 |
48
|
com13 |
⊢ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 → ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ) ) → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ) ) ) |
50 |
36 43 47 49
|
e110 |
⊢ ( 𝜒 ▶ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ) |
51 |
|
2sb5nd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) ) |
52 |
31 51
|
e1a |
⊢ ( 𝜒 ▶ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) ) |
53 |
|
biimp |
⊢ ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) ) |
54 |
53
|
com12 |
⊢ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) → ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) ) |
55 |
50 52 54
|
e11 |
⊢ ( 𝜒 ▶ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
56 |
55
|
in1 |
⊢ ( 𝜒 → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
57 |
1 56
|
sylbir |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
58 |
21 57
|
impbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) |