Step |
Hyp |
Ref |
Expression |
1 |
|
2vmadivsum.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
2vmadivsum.2 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) − ( log ‘ 𝑦 ) ) ) ≤ 𝐴 ) |
3 |
|
vmalogdivsum2 |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) |
4 |
3
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) ) |
5 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
6 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
8 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
10 |
9 7
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
11 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ Fin ) |
12 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) → 𝑚 ∈ ℕ ) |
13 |
12
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℕ ) |
14 |
|
vmacl |
⊢ ( 𝑚 ∈ ℕ → ( Λ ‘ 𝑚 ) ∈ ℝ ) |
15 |
13 14
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( Λ ‘ 𝑚 ) ∈ ℝ ) |
16 |
15 13
|
nndivred |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( Λ ‘ 𝑚 ) / 𝑚 ) ∈ ℝ ) |
17 |
11 16
|
fsumrecl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ∈ ℝ ) |
18 |
10 17
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) ∈ ℝ ) |
19 |
5 18
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) ∈ ℝ ) |
20 |
|
elioore |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ ) |
22 |
|
eliooord |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( 1 < 𝑥 ∧ 𝑥 < +∞ ) ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 < 𝑥 ∧ 𝑥 < +∞ ) ) |
24 |
23
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 < 𝑥 ) |
25 |
21 24
|
rplogcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ+ ) |
26 |
19 25
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
27 |
|
1rp |
⊢ 1 ∈ ℝ+ |
28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ+ ) |
29 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ ) |
30 |
29 21 24
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ≤ 𝑥 ) |
31 |
21 28 30
|
rpgecld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ+ ) |
32 |
31
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
33 |
32
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) / 2 ) ∈ ℝ ) |
34 |
26 33
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ∈ ℝ ) |
35 |
34
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ∈ ℂ ) |
36 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ+ ) |
37 |
7
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
38 |
36 37
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
39 |
38
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
40 |
10 39
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
41 |
5 40
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
42 |
41 25
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
43 |
42 33
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ∈ ℝ ) |
44 |
43
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ∈ ℂ ) |
45 |
19
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) ∈ ℂ ) |
46 |
41
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
47 |
32
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
48 |
25
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ≠ 0 ) |
49 |
45 46 47 48
|
divsubdird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) ) |
50 |
10
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
51 |
17
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ∈ ℂ ) |
52 |
39
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ ) |
53 |
50 51 52
|
subdid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) − ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
54 |
53
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) − ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
55 |
18
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) ∈ ℂ ) |
56 |
40
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
57 |
5 55 56
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) − ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
58 |
54 57
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
59 |
58
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) |
60 |
26
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) ∈ ℂ ) |
61 |
42
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ∈ ℂ ) |
62 |
33
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) / 2 ) ∈ ℂ ) |
63 |
60 61 62
|
nnncan2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) ) |
64 |
49 59 63
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) = ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ) |
65 |
64
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ) ) |
66 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
67 |
5 10
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
68 |
67 25
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
69 |
1
|
rpred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐴 ∈ ℝ ) |
71 |
|
ioossre |
⊢ ( 1 (,) +∞ ) ⊆ ℝ |
72 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
73 |
|
o1const |
⊢ ( ( ( 1 (,) +∞ ) ⊆ ℝ ∧ 1 ∈ ℂ ) → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 1 ) ∈ 𝑂(1) ) |
74 |
71 72 73
|
sylancr |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 1 ) ∈ 𝑂(1) ) |
75 |
68
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ∈ ℂ ) |
76 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℂ ) |
77 |
67
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
78 |
77 47 47 48
|
divsubdird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) / ( log ‘ 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / ( log ‘ 𝑥 ) ) ) ) |
79 |
77 47
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℂ ) |
80 |
79 47 48
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) / ( log ‘ 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 1 / ( log ‘ 𝑥 ) ) ) ) |
81 |
47 48
|
dividd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) / ( log ‘ 𝑥 ) ) = 1 ) |
82 |
81
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − 1 ) ) |
83 |
78 80 82
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 1 / ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − 1 ) ) |
84 |
83
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 1 / ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − 1 ) ) ) |
85 |
67 32
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℝ ) |
86 |
29 25
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
87 |
31
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ+ ) ) |
88 |
87
|
ssrdv |
⊢ ( 𝜑 → ( 1 (,) +∞ ) ⊆ ℝ+ ) |
89 |
|
vmadivsum |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) |
90 |
89
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
91 |
88 90
|
o1res2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
92 |
|
divlogrlim |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ⇝𝑟 0 |
93 |
|
rlimo1 |
⊢ ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ⇝𝑟 0 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
94 |
92 93
|
mp1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
95 |
85 86 91 94
|
o1mul2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 1 / ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
96 |
84 95
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − 1 ) ) ∈ 𝑂(1) ) |
97 |
75 76 96
|
o1dif |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 1 ) ∈ 𝑂(1) ) ) |
98 |
74 97
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
99 |
69
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
100 |
|
o1const |
⊢ ( ( ( 1 (,) +∞ ) ⊆ ℝ ∧ 𝐴 ∈ ℂ ) → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 𝐴 ) ∈ 𝑂(1) ) |
101 |
71 99 100
|
sylancr |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 𝐴 ) ∈ 𝑂(1) ) |
102 |
68 70 98 101
|
o1mul2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ) ∈ 𝑂(1) ) |
103 |
68 70
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ∈ ℝ ) |
104 |
17 39
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
105 |
10 104
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ ) |
106 |
5 105
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ ) |
107 |
106
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ ) |
108 |
107 47 48
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ∈ ℂ ) |
109 |
107
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℝ ) |
110 |
67 70
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) ∈ ℝ ) |
111 |
105
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ ) |
112 |
111
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℝ ) |
113 |
5 112
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℝ ) |
114 |
5 111
|
fsumabs |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) |
115 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐴 ∈ ℝ ) |
116 |
10 115
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) ∈ ℝ ) |
117 |
104
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
118 |
50 117
|
absmuld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = ( ( abs ‘ ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) |
119 |
|
vmage0 |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( Λ ‘ 𝑛 ) ) |
120 |
7 119
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( Λ ‘ 𝑛 ) ) |
121 |
9 37 120
|
divge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) |
122 |
10 121
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) |
123 |
122
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) |
124 |
118 123
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) |
125 |
117
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ ) |
126 |
|
fveq2 |
⊢ ( 𝑖 = 𝑚 → ( Λ ‘ 𝑖 ) = ( Λ ‘ 𝑚 ) ) |
127 |
|
id |
⊢ ( 𝑖 = 𝑚 → 𝑖 = 𝑚 ) |
128 |
126 127
|
oveq12d |
⊢ ( 𝑖 = 𝑚 → ( ( Λ ‘ 𝑖 ) / 𝑖 ) = ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) |
129 |
128
|
cbvsumv |
⊢ Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) |
130 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ⌊ ‘ 𝑦 ) = ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) |
131 |
130
|
oveq2d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( 1 ... ( ⌊ ‘ 𝑦 ) ) = ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) |
132 |
131
|
sumeq1d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) |
133 |
129 132
|
syl5eq |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) |
134 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( log ‘ 𝑦 ) = ( log ‘ ( 𝑥 / 𝑛 ) ) ) |
135 |
133 134
|
oveq12d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) − ( log ‘ 𝑦 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) |
136 |
135
|
fveq2d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) − ( log ‘ 𝑦 ) ) ) = ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
137 |
136
|
breq1d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) − ( log ‘ 𝑦 ) ) ) ≤ 𝐴 ↔ ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ≤ 𝐴 ) ) |
138 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) − ( log ‘ 𝑦 ) ) ) ≤ 𝐴 ) |
139 |
38
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ ) |
140 |
7
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ ) |
141 |
140
|
mulid2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · 𝑛 ) = 𝑛 ) |
142 |
|
fznnfl |
⊢ ( 𝑥 ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑥 ) ) ) |
143 |
21 142
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑥 ) ) ) |
144 |
143
|
simplbda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≤ 𝑥 ) |
145 |
141 144
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · 𝑛 ) ≤ 𝑥 ) |
146 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
147 |
21
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
148 |
146 147 37
|
lemuldivd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 1 · 𝑛 ) ≤ 𝑥 ↔ 1 ≤ ( 𝑥 / 𝑛 ) ) ) |
149 |
145 148
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ≤ ( 𝑥 / 𝑛 ) ) |
150 |
|
1re |
⊢ 1 ∈ ℝ |
151 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( ( 𝑥 / 𝑛 ) ∈ ( 1 [,) +∞ ) ↔ ( ( 𝑥 / 𝑛 ) ∈ ℝ ∧ 1 ≤ ( 𝑥 / 𝑛 ) ) ) ) |
152 |
150 151
|
ax-mp |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ( 1 [,) +∞ ) ↔ ( ( 𝑥 / 𝑛 ) ∈ ℝ ∧ 1 ≤ ( 𝑥 / 𝑛 ) ) ) |
153 |
139 149 152
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ( 1 [,) +∞ ) ) |
154 |
137 138 153
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ≤ 𝐴 ) |
155 |
125 115 10 121 154
|
lemul2ad |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) ) |
156 |
124 155
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) ) |
157 |
5 112 116 156
|
fsumle |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) ) |
158 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐴 ∈ ℂ ) |
159 |
5 158 50
|
fsummulc1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) ) |
160 |
157 159
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) ) |
161 |
109 113 110 114 160
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) ) |
162 |
109 110 25 161
|
lediv1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( log ‘ 𝑥 ) ) ≤ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) / ( log ‘ 𝑥 ) ) ) |
163 |
107 47 48
|
absdivd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) = ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( abs ‘ ( log ‘ 𝑥 ) ) ) ) |
164 |
25
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ ( log ‘ 𝑥 ) ) |
165 |
32 164
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( log ‘ 𝑥 ) ) = ( log ‘ 𝑥 ) ) |
166 |
165
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( abs ‘ ( log ‘ 𝑥 ) ) ) = ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( log ‘ 𝑥 ) ) ) |
167 |
163 166
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) = ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( log ‘ 𝑥 ) ) ) |
168 |
5 10 121
|
fsumge0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) |
169 |
67 25 168
|
divge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) |
170 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐴 ∈ ℝ+ ) |
171 |
170
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ 𝐴 ) |
172 |
68 70 169 171
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ) |
173 |
103 172
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ) |
174 |
77 158 47 48
|
div23d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) / ( log ‘ 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ) |
175 |
173 174
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) / ( log ‘ 𝑥 ) ) ) |
176 |
162 167 175
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) ≤ ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ) ) |
177 |
176
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) ≤ ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ) ) |
178 |
66 102 103 108 177
|
o1le |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
179 |
65 178
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ) ∈ 𝑂(1) ) |
180 |
35 44 179
|
o1dif |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) ) ) |
181 |
4 180
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) ) |