Metamath Proof Explorer


Theorem 2vmadivsumlem

Description: Lemma for 2vmadivsum . (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses 2vmadivsum.1 ( 𝜑𝐴 ∈ ℝ+ )
2vmadivsum.2 ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) − ( log ‘ 𝑦 ) ) ) ≤ 𝐴 )
Assertion 2vmadivsumlem ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) )

Proof

Step Hyp Ref Expression
1 2vmadivsum.1 ( 𝜑𝐴 ∈ ℝ+ )
2 2vmadivsum.2 ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) − ( log ‘ 𝑦 ) ) ) ≤ 𝐴 )
3 vmalogdivsum2 ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1)
4 3 a1i ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) )
5 fzfid ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin )
6 elfznn ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ )
7 6 adantl ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ )
8 vmacl ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ )
9 7 8 syl ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ )
10 9 7 nndivred ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ )
11 fzfid ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ Fin )
12 elfznn ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) → 𝑚 ∈ ℕ )
13 12 adantl ( ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℕ )
14 vmacl ( 𝑚 ∈ ℕ → ( Λ ‘ 𝑚 ) ∈ ℝ )
15 13 14 syl ( ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( Λ ‘ 𝑚 ) ∈ ℝ )
16 15 13 nndivred ( ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( Λ ‘ 𝑚 ) / 𝑚 ) ∈ ℝ )
17 11 16 fsumrecl ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ∈ ℝ )
18 10 17 remulcld ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) ∈ ℝ )
19 5 18 fsumrecl ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) ∈ ℝ )
20 elioore ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ )
21 20 adantl ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ )
22 eliooord ( 𝑥 ∈ ( 1 (,) +∞ ) → ( 1 < 𝑥𝑥 < +∞ ) )
23 22 adantl ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 < 𝑥𝑥 < +∞ ) )
24 23 simpld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 1 < 𝑥 )
25 21 24 rplogcld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ+ )
26 19 25 rerpdivcld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) ∈ ℝ )
27 1rp 1 ∈ ℝ+
28 27 a1i ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ+ )
29 1red ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ )
30 29 21 24 ltled ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ≤ 𝑥 )
31 21 28 30 rpgecld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ+ )
32 31 relogcld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ )
33 32 rehalfcld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) / 2 ) ∈ ℝ )
34 26 33 resubcld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ∈ ℝ )
35 34 recnd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ∈ ℂ )
36 31 adantr ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ+ )
37 7 nnrpd ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ )
38 36 37 rpdivcld ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ )
39 38 relogcld ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ )
40 10 39 remulcld ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ )
41 5 40 fsumrecl ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ )
42 41 25 rerpdivcld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ∈ ℝ )
43 42 33 resubcld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ∈ ℝ )
44 43 recnd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ∈ ℂ )
45 19 recnd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) ∈ ℂ )
46 41 recnd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ )
47 32 recnd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℂ )
48 25 rpne0d ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ≠ 0 )
49 45 46 47 48 divsubdird ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) )
50 10 recnd ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ )
51 17 recnd ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ∈ ℂ )
52 39 recnd ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ )
53 50 51 52 subdid ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) − ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) )
54 53 sumeq2dv ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) − ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) )
55 18 recnd ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) ∈ ℂ )
56 40 recnd ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ )
57 5 55 56 fsumsub ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) − ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) )
58 54 57 eqtrd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) )
59 58 oveq1d ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) )
60 26 recnd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) ∈ ℂ )
61 42 recnd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ∈ ℂ )
62 33 recnd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) / 2 ) ∈ ℂ )
63 60 61 62 nnncan2d ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) )
64 49 59 63 3eqtr4d ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) = ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) )
65 64 mpteq2dva ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ) )
66 1red ( 𝜑 → 1 ∈ ℝ )
67 5 10 fsumrecl ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ )
68 67 25 rerpdivcld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ∈ ℝ )
69 1 rpred ( 𝜑𝐴 ∈ ℝ )
70 69 adantr ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐴 ∈ ℝ )
71 ioossre ( 1 (,) +∞ ) ⊆ ℝ
72 1cnd ( 𝜑 → 1 ∈ ℂ )
73 o1const ( ( ( 1 (,) +∞ ) ⊆ ℝ ∧ 1 ∈ ℂ ) → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 1 ) ∈ 𝑂(1) )
74 71 72 73 sylancr ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 1 ) ∈ 𝑂(1) )
75 68 recnd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ∈ ℂ )
76 1cnd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℂ )
77 67 recnd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ )
78 77 47 47 48 divsubdird ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) / ( log ‘ 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / ( log ‘ 𝑥 ) ) ) )
79 77 47 subcld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℂ )
80 79 47 48 divrecd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) / ( log ‘ 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 1 / ( log ‘ 𝑥 ) ) ) )
81 47 48 dividd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) / ( log ‘ 𝑥 ) ) = 1 )
82 81 oveq2d ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − 1 ) )
83 78 80 82 3eqtr3d ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 1 / ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − 1 ) )
84 83 mpteq2dva ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 1 / ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − 1 ) ) )
85 67 32 resubcld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℝ )
86 29 25 rerpdivcld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 / ( log ‘ 𝑥 ) ) ∈ ℝ )
87 31 ex ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ+ ) )
88 87 ssrdv ( 𝜑 → ( 1 (,) +∞ ) ⊆ ℝ+ )
89 vmadivsum ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1)
90 89 a1i ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) )
91 88 90 o1res2 ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) )
92 divlogrlim ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ⇝𝑟 0
93 rlimo1 ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ⇝𝑟 0 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) )
94 92 93 mp1i ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) )
95 85 86 91 94 o1mul2 ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 1 / ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) )
96 84 95 eqeltrrd ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − 1 ) ) ∈ 𝑂(1) )
97 75 76 96 o1dif ( 𝜑 → ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 1 ) ∈ 𝑂(1) ) )
98 74 97 mpbird ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) )
99 69 recnd ( 𝜑𝐴 ∈ ℂ )
100 o1const ( ( ( 1 (,) +∞ ) ⊆ ℝ ∧ 𝐴 ∈ ℂ ) → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 𝐴 ) ∈ 𝑂(1) )
101 71 99 100 sylancr ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 𝐴 ) ∈ 𝑂(1) )
102 68 70 98 101 o1mul2 ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ) ∈ 𝑂(1) )
103 68 70 remulcld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ∈ ℝ )
104 17 39 resubcld ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ )
105 10 104 remulcld ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ )
106 5 105 fsumrecl ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ )
107 106 recnd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ )
108 107 47 48 divcld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ∈ ℂ )
109 107 abscld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℝ )
110 67 70 remulcld ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) ∈ ℝ )
111 105 recnd ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ )
112 111 abscld ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℝ )
113 5 112 fsumrecl ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℝ )
114 5 111 fsumabs ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) )
115 70 adantr ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐴 ∈ ℝ )
116 10 115 remulcld ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) ∈ ℝ )
117 104 recnd ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ )
118 50 117 absmuld ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = ( ( abs ‘ ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) )
119 vmage0 ( 𝑛 ∈ ℕ → 0 ≤ ( Λ ‘ 𝑛 ) )
120 7 119 syl ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( Λ ‘ 𝑛 ) )
121 9 37 120 divge0d ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( ( Λ ‘ 𝑛 ) / 𝑛 ) )
122 10 121 absidd ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = ( ( Λ ‘ 𝑛 ) / 𝑛 ) )
123 122 oveq1d ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) )
124 118 123 eqtrd ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) )
125 117 abscld ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ )
126 fveq2 ( 𝑖 = 𝑚 → ( Λ ‘ 𝑖 ) = ( Λ ‘ 𝑚 ) )
127 id ( 𝑖 = 𝑚𝑖 = 𝑚 )
128 126 127 oveq12d ( 𝑖 = 𝑚 → ( ( Λ ‘ 𝑖 ) / 𝑖 ) = ( ( Λ ‘ 𝑚 ) / 𝑚 ) )
129 128 cbvsumv Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 )
130 fveq2 ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ⌊ ‘ 𝑦 ) = ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) )
131 130 oveq2d ( 𝑦 = ( 𝑥 / 𝑛 ) → ( 1 ... ( ⌊ ‘ 𝑦 ) ) = ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) )
132 131 sumeq1d ( 𝑦 = ( 𝑥 / 𝑛 ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) )
133 129 132 syl5eq ( 𝑦 = ( 𝑥 / 𝑛 ) → Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) )
134 fveq2 ( 𝑦 = ( 𝑥 / 𝑛 ) → ( log ‘ 𝑦 ) = ( log ‘ ( 𝑥 / 𝑛 ) ) )
135 133 134 oveq12d ( 𝑦 = ( 𝑥 / 𝑛 ) → ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) − ( log ‘ 𝑦 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) )
136 135 fveq2d ( 𝑦 = ( 𝑥 / 𝑛 ) → ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) − ( log ‘ 𝑦 ) ) ) = ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) )
137 136 breq1d ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) − ( log ‘ 𝑦 ) ) ) ≤ 𝐴 ↔ ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ≤ 𝐴 ) )
138 2 ad2antrr ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) / 𝑖 ) − ( log ‘ 𝑦 ) ) ) ≤ 𝐴 )
139 38 rpred ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ )
140 7 nncnd ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ )
141 140 mulid2d ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · 𝑛 ) = 𝑛 )
142 fznnfl ( 𝑥 ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛𝑥 ) ) )
143 21 142 syl ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛𝑥 ) ) )
144 143 simplbda ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛𝑥 )
145 141 144 eqbrtrd ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · 𝑛 ) ≤ 𝑥 )
146 1red ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ )
147 21 adantr ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ )
148 146 147 37 lemuldivd ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 1 · 𝑛 ) ≤ 𝑥 ↔ 1 ≤ ( 𝑥 / 𝑛 ) ) )
149 145 148 mpbid ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ≤ ( 𝑥 / 𝑛 ) )
150 1re 1 ∈ ℝ
151 elicopnf ( 1 ∈ ℝ → ( ( 𝑥 / 𝑛 ) ∈ ( 1 [,) +∞ ) ↔ ( ( 𝑥 / 𝑛 ) ∈ ℝ ∧ 1 ≤ ( 𝑥 / 𝑛 ) ) ) )
152 150 151 ax-mp ( ( 𝑥 / 𝑛 ) ∈ ( 1 [,) +∞ ) ↔ ( ( 𝑥 / 𝑛 ) ∈ ℝ ∧ 1 ≤ ( 𝑥 / 𝑛 ) ) )
153 139 149 152 sylanbrc ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ( 1 [,) +∞ ) )
154 137 138 153 rspcdva ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ≤ 𝐴 )
155 125 115 10 121 154 lemul2ad ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) )
156 124 155 eqbrtrd ( ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) )
157 5 112 116 156 fsumle ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) )
158 99 adantr ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐴 ∈ ℂ )
159 5 158 50 fsummulc1 ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) )
160 157 159 breqtrrd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) )
161 109 113 110 114 160 letrd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) )
162 109 110 25 161 lediv1dd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( log ‘ 𝑥 ) ) ≤ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) / ( log ‘ 𝑥 ) ) )
163 107 47 48 absdivd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) = ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( abs ‘ ( log ‘ 𝑥 ) ) ) )
164 25 rpge0d ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ ( log ‘ 𝑥 ) )
165 32 164 absidd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( log ‘ 𝑥 ) ) = ( log ‘ 𝑥 ) )
166 165 oveq2d ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( abs ‘ ( log ‘ 𝑥 ) ) ) = ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( log ‘ 𝑥 ) ) )
167 163 166 eqtrd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) = ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( log ‘ 𝑥 ) ) )
168 5 10 121 fsumge0 ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) )
169 67 25 168 divge0d ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) )
170 1 adantr ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐴 ∈ ℝ+ )
171 170 rpge0d ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ 𝐴 )
172 68 70 169 171 mulge0d ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) )
173 103 172 absidd ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) )
174 77 158 47 48 div23d ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) / ( log ‘ 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) )
175 173 174 eqtr4d ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) / ( log ‘ 𝑥 ) ) )
176 162 167 175 3brtr4d ( ( 𝜑𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) ≤ ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ) )
177 176 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) ≤ ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) · 𝐴 ) ) )
178 66 102 103 108 177 o1le ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) )
179 65 178 eqeltrrd ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ) ∈ 𝑂(1) )
180 35 44 179 o1dif ( 𝜑 → ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) ) )
181 4 180 mpbird ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) / 𝑚 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) )