Metamath Proof Explorer


Theorem 2wlkd

Description: Construction of a walk from two given edges in a graph. (Contributed by Alexander van der Vekens, 5-Feb-2018) (Revised by AV, 23-Jan-2021) (Proof shortened by AV, 14-Feb-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 2wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 ”⟩
2wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 ”⟩
2wlkd.s ( 𝜑 → ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) )
2wlkd.n ( 𝜑 → ( 𝐴𝐵𝐵𝐶 ) )
2wlkd.e ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼𝐾 ) ) )
2wlkd.v 𝑉 = ( Vtx ‘ 𝐺 )
2wlkd.i 𝐼 = ( iEdg ‘ 𝐺 )
Assertion 2wlkd ( 𝜑𝐹 ( Walks ‘ 𝐺 ) 𝑃 )

Proof

Step Hyp Ref Expression
1 2wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 ”⟩
2 2wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 ”⟩
3 2wlkd.s ( 𝜑 → ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) )
4 2wlkd.n ( 𝜑 → ( 𝐴𝐵𝐵𝐶 ) )
5 2wlkd.e ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼𝐾 ) ) )
6 2wlkd.v 𝑉 = ( Vtx ‘ 𝐺 )
7 2wlkd.i 𝐼 = ( iEdg ‘ 𝐺 )
8 s3cli ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ Word V
9 1 8 eqeltri 𝑃 ∈ Word V
10 9 a1i ( 𝜑𝑃 ∈ Word V )
11 s2cli ⟨“ 𝐽 𝐾 ”⟩ ∈ Word V
12 2 11 eqeltri 𝐹 ∈ Word V
13 12 a1i ( 𝜑𝐹 ∈ Word V )
14 1 2 2wlkdlem1 ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 )
15 14 a1i ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) )
16 1 2 3 4 5 2wlkdlem10 ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) )
17 1 2 3 4 2wlkdlem5 ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) )
18 6 1vgrex ( 𝐴𝑉𝐺 ∈ V )
19 18 3ad2ant1 ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) → 𝐺 ∈ V )
20 3 19 syl ( 𝜑𝐺 ∈ V )
21 1 2 3 2wlkdlem4 ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃𝑘 ) ∈ 𝑉 )
22 10 13 15 16 17 20 6 7 21 wlkd ( 𝜑𝐹 ( Walks ‘ 𝐺 ) 𝑃 )