Metamath Proof Explorer


Theorem 2wlkdlem1

Description: Lemma 1 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 ”⟩
2wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 ”⟩
Assertion 2wlkdlem1 ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 )

Proof

Step Hyp Ref Expression
1 2wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 ”⟩
2 2wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 ”⟩
3 1 fveq2i ( ♯ ‘ 𝑃 ) = ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 ”⟩ )
4 s3len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ) = 3
5 df-3 3 = ( 2 + 1 )
6 4 5 eqtri ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ) = ( 2 + 1 )
7 2 fveq2i ( ♯ ‘ 𝐹 ) = ( ♯ ‘ ⟨“ 𝐽 𝐾 ”⟩ )
8 s2len ( ♯ ‘ ⟨“ 𝐽 𝐾 ”⟩ ) = 2
9 7 8 eqtr2i 2 = ( ♯ ‘ 𝐹 )
10 9 oveq1i ( 2 + 1 ) = ( ( ♯ ‘ 𝐹 ) + 1 )
11 6 10 eqtri ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ) = ( ( ♯ ‘ 𝐹 ) + 1 )
12 3 11 eqtri ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 )