| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p | ⊢ 𝑃  =  〈“ 𝐴 𝐵 𝐶 ”〉 | 
						
							| 2 |  | 2wlkd.f | ⊢ 𝐹  =  〈“ 𝐽 𝐾 ”〉 | 
						
							| 3 |  | 2wlkd.s | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) | 
						
							| 4 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 0 )  =  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) | 
						
							| 5 |  | s3fv0 | ⊢ ( 𝐴  ∈  𝑉  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 )  =  𝐴 ) | 
						
							| 6 | 4 5 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑃 ‘ 0 )  =  𝐴 ) | 
						
							| 7 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 1 )  =  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) | 
						
							| 8 |  | s3fv1 | ⊢ ( 𝐵  ∈  𝑉  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 )  =  𝐵 ) | 
						
							| 9 | 7 8 | eqtrid | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝑃 ‘ 1 )  =  𝐵 ) | 
						
							| 10 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 2 )  =  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) | 
						
							| 11 |  | s3fv2 | ⊢ ( 𝐶  ∈  𝑉  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 )  =  𝐶 ) | 
						
							| 12 | 10 11 | eqtrid | ⊢ ( 𝐶  ∈  𝑉  →  ( 𝑃 ‘ 2 )  =  𝐶 ) | 
						
							| 13 | 6 9 12 | 3anim123i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 ) ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝜑  →  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 ) ) |