Step |
Hyp |
Ref |
Expression |
1 |
|
2wlkd.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 |
2 |
|
2wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 |
3 |
|
2wlkd.s |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
4 |
1 2 3
|
2wlkdlem3 |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) |
5 |
|
simp1 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 0 ) = 𝐴 ) |
6 |
5
|
eleq1d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ↔ 𝐴 ∈ 𝑉 ) ) |
7 |
|
simp2 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 1 ) = 𝐵 ) |
8 |
7
|
eleq1d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( ( 𝑃 ‘ 1 ) ∈ 𝑉 ↔ 𝐵 ∈ 𝑉 ) ) |
9 |
|
simp3 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 2 ) = 𝐶 ) |
10 |
9
|
eleq1d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( ( 𝑃 ‘ 2 ) ∈ 𝑉 ↔ 𝐶 ∈ 𝑉 ) ) |
11 |
6 8 10
|
3anbi123d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ↔ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ) |
12 |
11
|
bicomd |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ↔ ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) ) |
13 |
4 12
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ↔ ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) ) |
14 |
3 13
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) |
15 |
2
|
fveq2i |
⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 ) |
16 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 ) = 2 |
17 |
15 16
|
eqtri |
⊢ ( ♯ ‘ 𝐹 ) = 2 |
18 |
17
|
oveq2i |
⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 2 ) |
19 |
|
fz0tp |
⊢ ( 0 ... 2 ) = { 0 , 1 , 2 } |
20 |
18 19
|
eqtri |
⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) = { 0 , 1 , 2 } |
21 |
20
|
raleqi |
⊢ ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ∀ 𝑘 ∈ { 0 , 1 , 2 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) |
22 |
|
c0ex |
⊢ 0 ∈ V |
23 |
|
1ex |
⊢ 1 ∈ V |
24 |
|
2ex |
⊢ 2 ∈ V |
25 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 0 ) ) |
26 |
25
|
eleq1d |
⊢ ( 𝑘 = 0 → ( ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( 𝑃 ‘ 0 ) ∈ 𝑉 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 1 ) ) |
28 |
27
|
eleq1d |
⊢ ( 𝑘 = 1 → ( ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( 𝑃 ‘ 1 ) ∈ 𝑉 ) ) |
29 |
|
fveq2 |
⊢ ( 𝑘 = 2 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 2 ) ) |
30 |
29
|
eleq1d |
⊢ ( 𝑘 = 2 → ( ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) |
31 |
22 23 24 26 28 30
|
raltp |
⊢ ( ∀ 𝑘 ∈ { 0 , 1 , 2 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) |
32 |
21 31
|
bitri |
⊢ ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) |
33 |
14 32
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) |