| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p | ⊢ 𝑃  =  〈“ 𝐴 𝐵 𝐶 ”〉 | 
						
							| 2 |  | 2wlkd.f | ⊢ 𝐹  =  〈“ 𝐽 𝐾 ”〉 | 
						
							| 3 |  | 2wlkd.s | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) | 
						
							| 4 | 1 2 3 | 2wlkdlem3 | ⊢ ( 𝜑  →  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 ) ) | 
						
							| 5 |  | simp1 | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝑃 ‘ 0 )  =  𝐴 ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( ( 𝑃 ‘ 0 )  ∈  𝑉  ↔  𝐴  ∈  𝑉 ) ) | 
						
							| 7 |  | simp2 | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝑃 ‘ 1 )  =  𝐵 ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( ( 𝑃 ‘ 1 )  ∈  𝑉  ↔  𝐵  ∈  𝑉 ) ) | 
						
							| 9 |  | simp3 | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝑃 ‘ 2 )  =  𝐶 ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( ( 𝑃 ‘ 2 )  ∈  𝑉  ↔  𝐶  ∈  𝑉 ) ) | 
						
							| 11 | 6 8 10 | 3anbi123d | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( ( ( 𝑃 ‘ 0 )  ∈  𝑉  ∧  ( 𝑃 ‘ 1 )  ∈  𝑉  ∧  ( 𝑃 ‘ 2 )  ∈  𝑉 )  ↔  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) ) | 
						
							| 12 | 11 | bicomd | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ↔  ( ( 𝑃 ‘ 0 )  ∈  𝑉  ∧  ( 𝑃 ‘ 1 )  ∈  𝑉  ∧  ( 𝑃 ‘ 2 )  ∈  𝑉 ) ) ) | 
						
							| 13 | 4 12 | syl | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ↔  ( ( 𝑃 ‘ 0 )  ∈  𝑉  ∧  ( 𝑃 ‘ 1 )  ∈  𝑉  ∧  ( 𝑃 ‘ 2 )  ∈  𝑉 ) ) ) | 
						
							| 14 | 3 13 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑃 ‘ 0 )  ∈  𝑉  ∧  ( 𝑃 ‘ 1 )  ∈  𝑉  ∧  ( 𝑃 ‘ 2 )  ∈  𝑉 ) ) | 
						
							| 15 | 2 | fveq2i | ⊢ ( ♯ ‘ 𝐹 )  =  ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 ) | 
						
							| 16 |  | s2len | ⊢ ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 )  =  2 | 
						
							| 17 | 15 16 | eqtri | ⊢ ( ♯ ‘ 𝐹 )  =  2 | 
						
							| 18 | 17 | oveq2i | ⊢ ( 0 ... ( ♯ ‘ 𝐹 ) )  =  ( 0 ... 2 ) | 
						
							| 19 |  | fz0tp | ⊢ ( 0 ... 2 )  =  { 0 ,  1 ,  2 } | 
						
							| 20 | 18 19 | eqtri | ⊢ ( 0 ... ( ♯ ‘ 𝐹 ) )  =  { 0 ,  1 ,  2 } | 
						
							| 21 | 20 | raleqi | ⊢ ( ∀ 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 )  ∈  𝑉  ↔  ∀ 𝑘  ∈  { 0 ,  1 ,  2 } ( 𝑃 ‘ 𝑘 )  ∈  𝑉 ) | 
						
							| 22 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 23 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 24 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 26 | 25 | eleq1d | ⊢ ( 𝑘  =  0  →  ( ( 𝑃 ‘ 𝑘 )  ∈  𝑉  ↔  ( 𝑃 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑘  =  1  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 28 | 27 | eleq1d | ⊢ ( 𝑘  =  1  →  ( ( 𝑃 ‘ 𝑘 )  ∈  𝑉  ↔  ( 𝑃 ‘ 1 )  ∈  𝑉 ) ) | 
						
							| 29 |  | fveq2 | ⊢ ( 𝑘  =  2  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 2 ) ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑘  =  2  →  ( ( 𝑃 ‘ 𝑘 )  ∈  𝑉  ↔  ( 𝑃 ‘ 2 )  ∈  𝑉 ) ) | 
						
							| 31 | 22 23 24 26 28 30 | raltp | ⊢ ( ∀ 𝑘  ∈  { 0 ,  1 ,  2 } ( 𝑃 ‘ 𝑘 )  ∈  𝑉  ↔  ( ( 𝑃 ‘ 0 )  ∈  𝑉  ∧  ( 𝑃 ‘ 1 )  ∈  𝑉  ∧  ( 𝑃 ‘ 2 )  ∈  𝑉 ) ) | 
						
							| 32 | 21 31 | bitri | ⊢ ( ∀ 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 )  ∈  𝑉  ↔  ( ( 𝑃 ‘ 0 )  ∈  𝑉  ∧  ( 𝑃 ‘ 1 )  ∈  𝑉  ∧  ( 𝑃 ‘ 2 )  ∈  𝑉 ) ) | 
						
							| 33 | 14 32 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 )  ∈  𝑉 ) |