| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p | ⊢ 𝑃  =  〈“ 𝐴 𝐵 𝐶 ”〉 | 
						
							| 2 |  | 2wlkd.f | ⊢ 𝐹  =  〈“ 𝐽 𝐾 ”〉 | 
						
							| 3 |  | 2wlkd.s | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) | 
						
							| 4 |  | 2wlkd.n | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 5 | 1 2 3 | 2wlkdlem3 | ⊢ ( 𝜑  →  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 ) ) | 
						
							| 6 |  | simp1 | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝑃 ‘ 0 )  =  𝐴 ) | 
						
							| 7 |  | simp2 | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝑃 ‘ 1 )  =  𝐵 ) | 
						
							| 8 | 6 7 | neeq12d | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 )  ↔  𝐴  ≠  𝐵 ) ) | 
						
							| 9 |  | simp3 | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝑃 ‘ 2 )  =  𝐶 ) | 
						
							| 10 | 7 9 | neeq12d | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 2 )  ↔  𝐵  ≠  𝐶 ) ) | 
						
							| 11 | 8 10 | anbi12d | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( ( ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 )  ∧  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 2 ) )  ↔  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 ) ) ) | 
						
							| 12 | 11 | bicomd | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ↔  ( ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 )  ∧  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 2 ) ) ) ) | 
						
							| 13 | 5 12 | syl | ⊢ ( 𝜑  →  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ↔  ( ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 )  ∧  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 2 ) ) ) ) | 
						
							| 14 | 4 13 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 )  ∧  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 2 ) ) ) | 
						
							| 15 | 1 2 | 2wlkdlem2 | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) )  =  { 0 ,  1 } | 
						
							| 16 | 15 | raleqi | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) )  ↔  ∀ 𝑘  ∈  { 0 ,  1 } ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 17 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 18 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 20 |  | fv0p1e1 | ⊢ ( 𝑘  =  0  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 21 | 19 20 | neeq12d | ⊢ ( 𝑘  =  0  →  ( ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) )  ↔  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑘  =  1  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑘  =  1  →  ( 𝑘  +  1 )  =  ( 1  +  1 ) ) | 
						
							| 24 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 25 | 23 24 | eqtrdi | ⊢ ( 𝑘  =  1  →  ( 𝑘  +  1 )  =  2 ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝑘  =  1  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ 2 ) ) | 
						
							| 27 | 22 26 | neeq12d | ⊢ ( 𝑘  =  1  →  ( ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) )  ↔  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 2 ) ) ) | 
						
							| 28 | 17 18 21 27 | ralpr | ⊢ ( ∀ 𝑘  ∈  { 0 ,  1 } ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) )  ↔  ( ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 )  ∧  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 2 ) ) ) | 
						
							| 29 | 16 28 | bitri | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) )  ↔  ( ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 )  ∧  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 2 ) ) ) | 
						
							| 30 | 14 29 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) |