Step |
Hyp |
Ref |
Expression |
1 |
|
2wlkd.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 |
2 |
|
2wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 |
3 |
|
2wlkd.s |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
4 |
|
2wlkd.n |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) |
5 |
1 2 3
|
2wlkdlem3 |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) |
6 |
|
simp1 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 0 ) = 𝐴 ) |
7 |
|
simp2 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 1 ) = 𝐵 ) |
8 |
6 7
|
neeq12d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ↔ 𝐴 ≠ 𝐵 ) ) |
9 |
|
simp3 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 2 ) = 𝐶 ) |
10 |
7 9
|
neeq12d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ↔ 𝐵 ≠ 𝐶 ) ) |
11 |
8 10
|
anbi12d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ↔ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) ) |
12 |
11
|
bicomd |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
14 |
4 13
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
15 |
1 2
|
2wlkdlem2 |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 } |
16 |
15
|
raleqi |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ↔ ∀ 𝑘 ∈ { 0 , 1 } ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
17 |
|
c0ex |
⊢ 0 ∈ V |
18 |
|
1ex |
⊢ 1 ∈ V |
19 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 0 ) ) |
20 |
|
fv0p1e1 |
⊢ ( 𝑘 = 0 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 1 ) ) |
21 |
19 20
|
neeq12d |
⊢ ( 𝑘 = 0 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 1 ) ) |
23 |
|
oveq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 + 1 ) = ( 1 + 1 ) ) |
24 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
25 |
23 24
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( 𝑘 + 1 ) = 2 ) |
26 |
25
|
fveq2d |
⊢ ( 𝑘 = 1 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 2 ) ) |
27 |
22 26
|
neeq12d |
⊢ ( 𝑘 = 1 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
28 |
17 18 21 27
|
ralpr |
⊢ ( ∀ 𝑘 ∈ { 0 , 1 } ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
29 |
16 28
|
bitri |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
30 |
14 29
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |