| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2wlkd.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 |
| 2 |
|
2wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 |
| 3 |
|
2wlkd.s |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
| 4 |
|
2wlkd.n |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) |
| 5 |
|
2wlkd.e |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
| 6 |
|
prcom |
⊢ { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 } |
| 7 |
6
|
sseq1i |
⊢ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ↔ { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
| 8 |
7
|
biimpi |
⊢ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) → { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
| 10 |
3
|
simp2d |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 11 |
3
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → 𝐴 ∈ 𝑉 ) |
| 13 |
|
prssg |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ↔ { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
| 14 |
10 12 13
|
syl2an2r |
⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → ( ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ↔ { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
| 15 |
9 14
|
mpbird |
⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ) |
| 16 |
15
|
simpld |
⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ) |
| 17 |
16
|
ex |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) → 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) |
| 19 |
3
|
simp3d |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → 𝐶 ∈ 𝑉 ) |
| 21 |
|
prssg |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐾 ) ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
| 22 |
10 20 21
|
syl2an2r |
⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → ( ( 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐾 ) ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
| 23 |
18 22
|
mpbird |
⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → ( 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |
| 24 |
23
|
simpld |
⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) |
| 25 |
24
|
ex |
⊢ ( 𝜑 → ( { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) → 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |
| 26 |
17 25
|
anim12d |
⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) ) |
| 27 |
5 26
|
mpd |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |