Step |
Hyp |
Ref |
Expression |
1 |
|
2wlkd.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 |
2 |
|
2wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 |
3 |
|
2wlkd.s |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
4 |
|
2wlkd.n |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) |
5 |
|
2wlkd.e |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
6 |
|
prcom |
⊢ { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 } |
7 |
6
|
sseq1i |
⊢ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ↔ { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
8 |
7
|
biimpi |
⊢ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) → { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
10 |
3
|
simp2d |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
11 |
3
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → 𝐴 ∈ 𝑉 ) |
13 |
|
prssg |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ↔ { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
14 |
10 12 13
|
syl2an2r |
⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → ( ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ↔ { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
15 |
9 14
|
mpbird |
⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ) |
16 |
15
|
simpld |
⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) → 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ) |
17 |
16
|
ex |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) → 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ) ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) |
19 |
3
|
simp3d |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → 𝐶 ∈ 𝑉 ) |
21 |
|
prssg |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐾 ) ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
22 |
10 20 21
|
syl2an2r |
⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → ( ( 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐾 ) ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
23 |
18 22
|
mpbird |
⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → ( 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |
24 |
23
|
simpld |
⊢ ( ( 𝜑 ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) |
25 |
24
|
ex |
⊢ ( 𝜑 → ( { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) → 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |
26 |
17 25
|
anim12d |
⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) → ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) ) |
27 |
5 26
|
mpd |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |