Metamath Proof Explorer


Theorem 2wlkdlem7

Description: Lemma 7 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 ”⟩
2wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 ”⟩
2wlkd.s ( 𝜑 → ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) )
2wlkd.n ( 𝜑 → ( 𝐴𝐵𝐵𝐶 ) )
2wlkd.e ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼𝐾 ) ) )
Assertion 2wlkdlem7 ( 𝜑 → ( 𝐽 ∈ V ∧ 𝐾 ∈ V ) )

Proof

Step Hyp Ref Expression
1 2wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 ”⟩
2 2wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 ”⟩
3 2wlkd.s ( 𝜑 → ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) )
4 2wlkd.n ( 𝜑 → ( 𝐴𝐵𝐵𝐶 ) )
5 2wlkd.e ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼𝐾 ) ) )
6 1 2 3 4 5 2wlkdlem6 ( 𝜑 → ( 𝐵 ∈ ( 𝐼𝐽 ) ∧ 𝐵 ∈ ( 𝐼𝐾 ) ) )
7 elfvex ( 𝐵 ∈ ( 𝐼𝐽 ) → 𝐽 ∈ V )
8 elfvex ( 𝐵 ∈ ( 𝐼𝐾 ) → 𝐾 ∈ V )
9 7 8 anim12i ( ( 𝐵 ∈ ( 𝐼𝐽 ) ∧ 𝐵 ∈ ( 𝐼𝐾 ) ) → ( 𝐽 ∈ V ∧ 𝐾 ∈ V ) )
10 6 9 syl ( 𝜑 → ( 𝐽 ∈ V ∧ 𝐾 ∈ V ) )