| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p | ⊢ 𝑃  =  〈“ 𝐴 𝐵 𝐶 ”〉 | 
						
							| 2 |  | 2wlkd.f | ⊢ 𝐹  =  〈“ 𝐽 𝐾 ”〉 | 
						
							| 3 |  | 2wlkd.s | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) | 
						
							| 4 |  | 2wlkd.n | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 5 |  | 2wlkd.e | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ 𝐽 )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ 𝐾 ) ) ) | 
						
							| 6 | 1 2 3 4 5 | 2wlkdlem8 | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 0 )  =  𝐽  ∧  ( 𝐹 ‘ 1 )  =  𝐾 ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( ( 𝐹 ‘ 0 )  =  𝐽  →  ( 𝐼 ‘ ( 𝐹 ‘ 0 ) )  =  ( 𝐼 ‘ 𝐽 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝐹 ‘ 0 )  =  𝐽  ∧  ( 𝐹 ‘ 1 )  =  𝐾 )  →  ( 𝐼 ‘ ( 𝐹 ‘ 0 ) )  =  ( 𝐼 ‘ 𝐽 ) ) | 
						
							| 9 | 8 | sseq2d | ⊢ ( ( ( 𝐹 ‘ 0 )  =  𝐽  ∧  ( 𝐹 ‘ 1 )  =  𝐾 )  →  ( { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 0 ) )  ↔  { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ 𝐽 ) ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( ( 𝐹 ‘ 1 )  =  𝐾  →  ( 𝐼 ‘ ( 𝐹 ‘ 1 ) )  =  ( 𝐼 ‘ 𝐾 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝐹 ‘ 0 )  =  𝐽  ∧  ( 𝐹 ‘ 1 )  =  𝐾 )  →  ( 𝐼 ‘ ( 𝐹 ‘ 1 ) )  =  ( 𝐼 ‘ 𝐾 ) ) | 
						
							| 12 | 11 | sseq2d | ⊢ ( ( ( 𝐹 ‘ 0 )  =  𝐽  ∧  ( 𝐹 ‘ 1 )  =  𝐾 )  →  ( { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 1 ) )  ↔  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ 𝐾 ) ) ) | 
						
							| 13 | 9 12 | anbi12d | ⊢ ( ( ( 𝐹 ‘ 0 )  =  𝐽  ∧  ( 𝐹 ‘ 1 )  =  𝐾 )  →  ( ( { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 0 ) )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) )  ↔  ( { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ 𝐽 )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ 𝐾 ) ) ) ) | 
						
							| 14 | 6 13 | syl | ⊢ ( 𝜑  →  ( ( { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 0 ) )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) )  ↔  ( { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ 𝐽 )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ 𝐾 ) ) ) ) | 
						
							| 15 | 5 14 | mpbird | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 0 ) )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ) ) |