| Step | Hyp | Ref | Expression | 
						
							| 1 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 2 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 3 |  | 2fveq3 | ⊢ ( 𝑘  =  0  →  ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐸 ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 5 |  | fv0p1e1 | ⊢ ( 𝑘  =  0  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 6 | 4 5 | preq12d | ⊢ ( 𝑘  =  0  →  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  =  { ( 𝑃 ‘ 0 ) ,  ( 𝑃 ‘ 1 ) } ) | 
						
							| 7 | 3 6 | eqeq12d | ⊢ ( 𝑘  =  0  →  ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ↔  ( 𝐸 ‘ ( 𝐹 ‘ 0 ) )  =  { ( 𝑃 ‘ 0 ) ,  ( 𝑃 ‘ 1 ) } ) ) | 
						
							| 8 |  | 2fveq3 | ⊢ ( 𝑘  =  1  →  ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐸 ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑘  =  1  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑘  =  1  →  ( 𝑘  +  1 )  =  ( 1  +  1 ) ) | 
						
							| 11 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( 𝑘  =  1  →  ( 𝑘  +  1 )  =  2 ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝑘  =  1  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ 2 ) ) | 
						
							| 14 | 9 13 | preq12d | ⊢ ( 𝑘  =  1  →  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  =  { ( 𝑃 ‘ 1 ) ,  ( 𝑃 ‘ 2 ) } ) | 
						
							| 15 | 8 14 | eqeq12d | ⊢ ( 𝑘  =  1  →  ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ↔  ( 𝐸 ‘ ( 𝐹 ‘ 1 ) )  =  { ( 𝑃 ‘ 1 ) ,  ( 𝑃 ‘ 2 ) } ) ) | 
						
							| 16 | 1 2 7 15 | ralpr | ⊢ ( ∀ 𝑘  ∈  { 0 ,  1 } ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ↔  ( ( 𝐸 ‘ ( 𝐹 ‘ 0 ) )  =  { ( 𝑃 ‘ 0 ) ,  ( 𝑃 ‘ 1 ) }  ∧  ( 𝐸 ‘ ( 𝐹 ‘ 1 ) )  =  { ( 𝑃 ‘ 1 ) ,  ( 𝑃 ‘ 2 ) } ) ) |