Step |
Hyp |
Ref |
Expression |
1 |
|
c0ex |
⊢ 0 ∈ V |
2 |
|
1ex |
⊢ 1 ∈ V |
3 |
|
2fveq3 |
⊢ ( 𝑘 = 0 → ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐸 ‘ ( 𝐹 ‘ 0 ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 0 ) ) |
5 |
|
fv0p1e1 |
⊢ ( 𝑘 = 0 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 1 ) ) |
6 |
4 5
|
preq12d |
⊢ ( 𝑘 = 0 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
7 |
3 6
|
eqeq12d |
⊢ ( 𝑘 = 0 → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( 𝐸 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
8 |
|
2fveq3 |
⊢ ( 𝑘 = 1 → ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐸 ‘ ( 𝐹 ‘ 1 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 1 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 + 1 ) = ( 1 + 1 ) ) |
11 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
12 |
10 11
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( 𝑘 + 1 ) = 2 ) |
13 |
12
|
fveq2d |
⊢ ( 𝑘 = 1 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 2 ) ) |
14 |
9 13
|
preq12d |
⊢ ( 𝑘 = 1 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
15 |
8 14
|
eqeq12d |
⊢ ( 𝑘 = 1 → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( 𝐸 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
16 |
1 2 7 15
|
ralpr |
⊢ ( ∀ 𝑘 ∈ { 0 , 1 } ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( ( 𝐸 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐸 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |