| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p | ⊢ 𝑃  =  〈“ 𝐴 𝐵 𝐶 ”〉 | 
						
							| 2 |  | 2wlkd.f | ⊢ 𝐹  =  〈“ 𝐽 𝐾 ”〉 | 
						
							| 3 |  | 2wlkd.s | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) | 
						
							| 4 |  | 2wlkd.n | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 5 |  | 2wlkd.e | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ 𝐽 )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ 𝐾 ) ) ) | 
						
							| 6 |  | 2wlkd.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 7 |  | 2wlkd.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 8 | 1 2 3 4 5 6 7 | 2wlkd | ⊢ ( 𝜑  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 9 | 3 | simp1d | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 10 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 0 )  =  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) | 
						
							| 11 |  | s3fv0 | ⊢ ( 𝐴  ∈  𝑉  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 )  =  𝐴 ) | 
						
							| 12 | 10 11 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑃 ‘ 0 )  =  𝐴 ) | 
						
							| 13 | 9 12 | syl | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  =  𝐴 ) | 
						
							| 14 | 2 | fveq2i | ⊢ ( ♯ ‘ 𝐹 )  =  ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 ) | 
						
							| 15 |  | s2len | ⊢ ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 )  =  2 | 
						
							| 16 | 14 15 | eqtri | ⊢ ( ♯ ‘ 𝐹 )  =  2 | 
						
							| 17 | 1 16 | fveq12i | ⊢ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) | 
						
							| 18 | 3 | simp3d | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 19 |  | s3fv2 | ⊢ ( 𝐶  ∈  𝑉  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 )  =  𝐶 ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝜑  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 )  =  𝐶 ) | 
						
							| 21 | 17 20 | eqtrid | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) | 
						
							| 22 |  | 3simpb | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) | 
						
							| 23 | 3 22 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) | 
						
							| 24 |  | s2cli | ⊢ 〈“ 𝐽 𝐾 ”〉  ∈  Word  V | 
						
							| 25 | 2 24 | eqeltri | ⊢ 𝐹  ∈  Word  V | 
						
							| 26 |  | s3cli | ⊢ 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  Word  V | 
						
							| 27 | 1 26 | eqeltri | ⊢ 𝑃  ∈  Word  V | 
						
							| 28 | 25 27 | pm3.2i | ⊢ ( 𝐹  ∈  Word  V  ∧  𝑃  ∈  Word  V ) | 
						
							| 29 | 6 | iswlkon | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ∧  ( 𝐹  ∈  Word  V  ∧  𝑃  ∈  Word  V ) )  →  ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) ) ) | 
						
							| 30 | 23 28 29 | sylancl | ⊢ ( 𝜑  →  ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) ) ) | 
						
							| 31 | 8 13 21 30 | mpbir3and | ⊢ ( 𝜑  →  𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑃 ) |