Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑏 = 𝑐 → ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) = ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) |
2 |
|
wspthneq1eq2 |
⊢ ( ( 𝑡 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ∧ 𝑡 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) → ( 𝐴 = 𝐴 ∧ 𝑏 = 𝑐 ) ) |
3 |
2
|
simprd |
⊢ ( ( 𝑡 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ∧ 𝑡 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) → 𝑏 = 𝑐 ) |
4 |
3
|
3adant1 |
⊢ ( ( ⊤ ∧ 𝑡 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ∧ 𝑡 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) → 𝑏 = 𝑐 ) |
5 |
1 4
|
disjord |
⊢ ( ⊤ → Disj 𝑏 ∈ ( 𝑉 ∖ { 𝐴 } ) ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ) |
6 |
5
|
mptru |
⊢ Disj 𝑏 ∈ ( 𝑉 ∖ { 𝐴 } ) ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) |