Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑎 = 𝑐 → ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) = ( 𝑐 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑏 = 𝑑 → ( 𝑐 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) = ( 𝑐 ( 2 WSPathsNOn 𝐺 ) 𝑑 ) ) |
3 |
|
sneq |
⊢ ( 𝑎 = 𝑐 → { 𝑎 } = { 𝑐 } ) |
4 |
3
|
difeq2d |
⊢ ( 𝑎 = 𝑐 → ( 𝑉 ∖ { 𝑎 } ) = ( 𝑉 ∖ { 𝑐 } ) ) |
5 |
|
wspthneq1eq2 |
⊢ ( ( 𝑡 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ∧ 𝑡 ∈ ( 𝑐 ( 2 WSPathsNOn 𝐺 ) 𝑑 ) ) → ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) |
6 |
5
|
simpld |
⊢ ( ( 𝑡 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ∧ 𝑡 ∈ ( 𝑐 ( 2 WSPathsNOn 𝐺 ) 𝑑 ) ) → 𝑎 = 𝑐 ) |
7 |
6
|
3adant1 |
⊢ ( ( ⊤ ∧ 𝑡 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ∧ 𝑡 ∈ ( 𝑐 ( 2 WSPathsNOn 𝐺 ) 𝑑 ) ) → 𝑎 = 𝑐 ) |
8 |
1 2 4 7
|
disjiund |
⊢ ( ⊤ → Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ) |
9 |
8
|
mptru |
⊢ Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) |