Description: 317 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | 317prm | ⊢ ; ; 3 1 7 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
2 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
3 | 1 2 | deccl | ⊢ ; 3 1 ∈ ℕ0 |
4 | 7nn | ⊢ 7 ∈ ℕ | |
5 | 3 4 | decnncl | ⊢ ; ; 3 1 7 ∈ ℕ |
6 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
7 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
8 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
9 | 3lt8 | ⊢ 3 < 8 | |
10 | 1lt10 | ⊢ 1 < ; 1 0 | |
11 | 7lt10 | ⊢ 7 < ; 1 0 | |
12 | 1 6 2 7 8 2 9 10 11 | 3decltc | ⊢ ; ; 3 1 7 < ; ; 8 4 1 |
13 | 1nn | ⊢ 1 ∈ ℕ | |
14 | 1 13 | decnncl | ⊢ ; 3 1 ∈ ℕ |
15 | 14 8 2 10 | declti | ⊢ 1 < ; ; 3 1 7 |
16 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
17 | df-7 | ⊢ 7 = ( 6 + 1 ) | |
18 | 3 1 16 17 | dec2dvds | ⊢ ¬ 2 ∥ ; ; 3 1 7 |
19 | 3nn | ⊢ 3 ∈ ℕ | |
20 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
21 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
22 | 20 21 | deccl | ⊢ ; ; 1 0 5 ∈ ℕ0 |
23 | 2nn | ⊢ 2 ∈ ℕ | |
24 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
25 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
26 | eqid | ⊢ ; ; 1 0 5 = ; ; 1 0 5 | |
27 | 25 | dec0h | ⊢ 2 = ; 0 2 |
28 | eqid | ⊢ ; 1 0 = ; 1 0 | |
29 | ax-1cn | ⊢ 1 ∈ ℂ | |
30 | 29 | addid2i | ⊢ ( 0 + 1 ) = 1 |
31 | 2 | dec0h | ⊢ 1 = ; 0 1 |
32 | 30 31 | eqtri | ⊢ ( 0 + 1 ) = ; 0 1 |
33 | 3cn | ⊢ 3 ∈ ℂ | |
34 | 33 | mulid1i | ⊢ ( 3 · 1 ) = 3 |
35 | 00id | ⊢ ( 0 + 0 ) = 0 | |
36 | 34 35 | oveq12i | ⊢ ( ( 3 · 1 ) + ( 0 + 0 ) ) = ( 3 + 0 ) |
37 | 33 | addid1i | ⊢ ( 3 + 0 ) = 3 |
38 | 36 37 | eqtri | ⊢ ( ( 3 · 1 ) + ( 0 + 0 ) ) = 3 |
39 | 33 | mul01i | ⊢ ( 3 · 0 ) = 0 |
40 | 39 | oveq1i | ⊢ ( ( 3 · 0 ) + 1 ) = ( 0 + 1 ) |
41 | 40 30 | eqtri | ⊢ ( ( 3 · 0 ) + 1 ) = 1 |
42 | 41 31 | eqtri | ⊢ ( ( 3 · 0 ) + 1 ) = ; 0 1 |
43 | 2 24 24 2 28 32 1 2 24 38 42 | decma2c | ⊢ ( ( 3 · ; 1 0 ) + ( 0 + 1 ) ) = ; 3 1 |
44 | 5cn | ⊢ 5 ∈ ℂ | |
45 | 5t3e15 | ⊢ ( 5 · 3 ) = ; 1 5 | |
46 | 44 33 45 | mulcomli | ⊢ ( 3 · 5 ) = ; 1 5 |
47 | 5p2e7 | ⊢ ( 5 + 2 ) = 7 | |
48 | 2 21 25 46 47 | decaddi | ⊢ ( ( 3 · 5 ) + 2 ) = ; 1 7 |
49 | 20 21 24 25 26 27 1 8 2 43 48 | decma2c | ⊢ ( ( 3 · ; ; 1 0 5 ) + 2 ) = ; ; 3 1 7 |
50 | 2lt3 | ⊢ 2 < 3 | |
51 | 19 22 23 49 50 | ndvdsi | ⊢ ¬ 3 ∥ ; ; 3 1 7 |
52 | 2lt5 | ⊢ 2 < 5 | |
53 | 3 23 52 47 | dec5dvds2 | ⊢ ¬ 5 ∥ ; ; 3 1 7 |
54 | 7 21 | deccl | ⊢ ; 4 5 ∈ ℕ0 |
55 | eqid | ⊢ ; 4 5 = ; 4 5 | |
56 | 33 | addid2i | ⊢ ( 0 + 3 ) = 3 |
57 | 56 | oveq2i | ⊢ ( ( 7 · 4 ) + ( 0 + 3 ) ) = ( ( 7 · 4 ) + 3 ) |
58 | 7t4e28 | ⊢ ( 7 · 4 ) = ; 2 8 | |
59 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
60 | 8p3e11 | ⊢ ( 8 + 3 ) = ; 1 1 | |
61 | 25 6 1 58 59 2 60 | decaddci | ⊢ ( ( 7 · 4 ) + 3 ) = ; 3 1 |
62 | 57 61 | eqtri | ⊢ ( ( 7 · 4 ) + ( 0 + 3 ) ) = ; 3 1 |
63 | 7t5e35 | ⊢ ( 7 · 5 ) = ; 3 5 | |
64 | 1 21 25 63 47 | decaddi | ⊢ ( ( 7 · 5 ) + 2 ) = ; 3 7 |
65 | 7 21 24 25 55 27 8 8 1 62 64 | decma2c | ⊢ ( ( 7 · ; 4 5 ) + 2 ) = ; ; 3 1 7 |
66 | 2lt7 | ⊢ 2 < 7 | |
67 | 4 54 23 65 66 | ndvdsi | ⊢ ¬ 7 ∥ ; ; 3 1 7 |
68 | 2 13 | decnncl | ⊢ ; 1 1 ∈ ℕ |
69 | 25 6 | deccl | ⊢ ; 2 8 ∈ ℕ0 |
70 | 9nn | ⊢ 9 ∈ ℕ | |
71 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
72 | eqid | ⊢ ; 2 8 = ; 2 8 | |
73 | 71 | dec0h | ⊢ 9 = ; 0 9 |
74 | 2 2 | deccl | ⊢ ; 1 1 ∈ ℕ0 |
75 | eqid | ⊢ ; 1 1 = ; 1 1 | |
76 | 9cn | ⊢ 9 ∈ ℂ | |
77 | 76 | addid2i | ⊢ ( 0 + 9 ) = 9 |
78 | 77 73 | eqtri | ⊢ ( 0 + 9 ) = ; 0 9 |
79 | 2cn | ⊢ 2 ∈ ℂ | |
80 | 79 | mulid2i | ⊢ ( 1 · 2 ) = 2 |
81 | 80 30 | oveq12i | ⊢ ( ( 1 · 2 ) + ( 0 + 1 ) ) = ( 2 + 1 ) |
82 | 81 59 | eqtri | ⊢ ( ( 1 · 2 ) + ( 0 + 1 ) ) = 3 |
83 | 80 | oveq1i | ⊢ ( ( 1 · 2 ) + 9 ) = ( 2 + 9 ) |
84 | 9p2e11 | ⊢ ( 9 + 2 ) = ; 1 1 | |
85 | 76 79 84 | addcomli | ⊢ ( 2 + 9 ) = ; 1 1 |
86 | 83 85 | eqtri | ⊢ ( ( 1 · 2 ) + 9 ) = ; 1 1 |
87 | 2 2 24 71 75 78 25 2 2 82 86 | decmac | ⊢ ( ( ; 1 1 · 2 ) + ( 0 + 9 ) ) = ; 3 1 |
88 | 8cn | ⊢ 8 ∈ ℂ | |
89 | 88 | mulid2i | ⊢ ( 1 · 8 ) = 8 |
90 | 89 30 | oveq12i | ⊢ ( ( 1 · 8 ) + ( 0 + 1 ) ) = ( 8 + 1 ) |
91 | 8p1e9 | ⊢ ( 8 + 1 ) = 9 | |
92 | 90 91 | eqtri | ⊢ ( ( 1 · 8 ) + ( 0 + 1 ) ) = 9 |
93 | 89 | oveq1i | ⊢ ( ( 1 · 8 ) + 9 ) = ( 8 + 9 ) |
94 | 9p8e17 | ⊢ ( 9 + 8 ) = ; 1 7 | |
95 | 76 88 94 | addcomli | ⊢ ( 8 + 9 ) = ; 1 7 |
96 | 93 95 | eqtri | ⊢ ( ( 1 · 8 ) + 9 ) = ; 1 7 |
97 | 2 2 24 71 75 73 6 8 2 92 96 | decmac | ⊢ ( ( ; 1 1 · 8 ) + 9 ) = ; 9 7 |
98 | 25 6 24 71 72 73 74 8 71 87 97 | decma2c | ⊢ ( ( ; 1 1 · ; 2 8 ) + 9 ) = ; ; 3 1 7 |
99 | 9lt10 | ⊢ 9 < ; 1 0 | |
100 | 13 2 71 99 | declti | ⊢ 9 < ; 1 1 |
101 | 68 69 70 98 100 | ndvdsi | ⊢ ¬ ; 1 1 ∥ ; ; 3 1 7 |
102 | 2 19 | decnncl | ⊢ ; 1 3 ∈ ℕ |
103 | 25 7 | deccl | ⊢ ; 2 4 ∈ ℕ0 |
104 | 5nn | ⊢ 5 ∈ ℕ | |
105 | eqid | ⊢ ; 2 4 = ; 2 4 | |
106 | 21 | dec0h | ⊢ 5 = ; 0 5 |
107 | 2 1 | deccl | ⊢ ; 1 3 ∈ ℕ0 |
108 | eqid | ⊢ ; 1 3 = ; 1 3 | |
109 | 44 | addid2i | ⊢ ( 0 + 5 ) = 5 |
110 | 109 106 | eqtri | ⊢ ( 0 + 5 ) = ; 0 5 |
111 | 16 | oveq1i | ⊢ ( ( 3 · 2 ) + 5 ) = ( 6 + 5 ) |
112 | 6p5e11 | ⊢ ( 6 + 5 ) = ; 1 1 | |
113 | 111 112 | eqtri | ⊢ ( ( 3 · 2 ) + 5 ) = ; 1 1 |
114 | 2 1 24 21 108 110 25 2 2 82 113 | decmac | ⊢ ( ( ; 1 3 · 2 ) + ( 0 + 5 ) ) = ; 3 1 |
115 | 4cn | ⊢ 4 ∈ ℂ | |
116 | 115 | mulid2i | ⊢ ( 1 · 4 ) = 4 |
117 | 116 30 | oveq12i | ⊢ ( ( 1 · 4 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
118 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
119 | 117 118 | eqtri | ⊢ ( ( 1 · 4 ) + ( 0 + 1 ) ) = 5 |
120 | 4t3e12 | ⊢ ( 4 · 3 ) = ; 1 2 | |
121 | 115 33 120 | mulcomli | ⊢ ( 3 · 4 ) = ; 1 2 |
122 | 44 79 47 | addcomli | ⊢ ( 2 + 5 ) = 7 |
123 | 2 25 21 121 122 | decaddi | ⊢ ( ( 3 · 4 ) + 5 ) = ; 1 7 |
124 | 2 1 24 21 108 106 7 8 2 119 123 | decmac | ⊢ ( ( ; 1 3 · 4 ) + 5 ) = ; 5 7 |
125 | 25 7 24 21 105 106 107 8 21 114 124 | decma2c | ⊢ ( ( ; 1 3 · ; 2 4 ) + 5 ) = ; ; 3 1 7 |
126 | 5lt10 | ⊢ 5 < ; 1 0 | |
127 | 13 1 21 126 | declti | ⊢ 5 < ; 1 3 |
128 | 102 103 104 125 127 | ndvdsi | ⊢ ¬ ; 1 3 ∥ ; ; 3 1 7 |
129 | 2 4 | decnncl | ⊢ ; 1 7 ∈ ℕ |
130 | 2 6 | deccl | ⊢ ; 1 8 ∈ ℕ0 |
131 | eqid | ⊢ ; 1 8 = ; 1 8 | |
132 | 2 8 | deccl | ⊢ ; 1 7 ∈ ℕ0 |
133 | eqid | ⊢ ; 1 7 = ; 1 7 | |
134 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
135 | 33 29 134 | addcomli | ⊢ ( 1 + 3 ) = 4 |
136 | 24 2 2 1 31 108 30 135 | decadd | ⊢ ( 1 + ; 1 3 ) = ; 1 4 |
137 | 29 | mulid1i | ⊢ ( 1 · 1 ) = 1 |
138 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
139 | 137 138 | oveq12i | ⊢ ( ( 1 · 1 ) + ( 1 + 1 ) ) = ( 1 + 2 ) |
140 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
141 | 139 140 | eqtri | ⊢ ( ( 1 · 1 ) + ( 1 + 1 ) ) = 3 |
142 | 7cn | ⊢ 7 ∈ ℂ | |
143 | 142 | mulid1i | ⊢ ( 7 · 1 ) = 7 |
144 | 143 | oveq1i | ⊢ ( ( 7 · 1 ) + 4 ) = ( 7 + 4 ) |
145 | 7p4e11 | ⊢ ( 7 + 4 ) = ; 1 1 | |
146 | 144 145 | eqtri | ⊢ ( ( 7 · 1 ) + 4 ) = ; 1 1 |
147 | 2 8 2 7 133 136 2 2 2 141 146 | decmac | ⊢ ( ( ; 1 7 · 1 ) + ( 1 + ; 1 3 ) ) = ; 3 1 |
148 | 89 109 | oveq12i | ⊢ ( ( 1 · 8 ) + ( 0 + 5 ) ) = ( 8 + 5 ) |
149 | 8p5e13 | ⊢ ( 8 + 5 ) = ; 1 3 | |
150 | 148 149 | eqtri | ⊢ ( ( 1 · 8 ) + ( 0 + 5 ) ) = ; 1 3 |
151 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
152 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
153 | 8t7e56 | ⊢ ( 8 · 7 ) = ; 5 6 | |
154 | 88 142 153 | mulcomli | ⊢ ( 7 · 8 ) = ; 5 6 |
155 | 21 151 152 154 | decsuc | ⊢ ( ( 7 · 8 ) + 1 ) = ; 5 7 |
156 | 2 8 24 2 133 31 6 8 21 150 155 | decmac | ⊢ ( ( ; 1 7 · 8 ) + 1 ) = ; ; 1 3 7 |
157 | 2 6 2 2 131 75 132 8 107 147 156 | decma2c | ⊢ ( ( ; 1 7 · ; 1 8 ) + ; 1 1 ) = ; ; 3 1 7 |
158 | 1lt7 | ⊢ 1 < 7 | |
159 | 2 2 4 158 | declt | ⊢ ; 1 1 < ; 1 7 |
160 | 129 130 68 157 159 | ndvdsi | ⊢ ¬ ; 1 7 ∥ ; ; 3 1 7 |
161 | 2 70 | decnncl | ⊢ ; 1 9 ∈ ℕ |
162 | 2 151 | deccl | ⊢ ; 1 6 ∈ ℕ0 |
163 | eqid | ⊢ ; 1 6 = ; 1 6 | |
164 | 2 71 | deccl | ⊢ ; 1 9 ∈ ℕ0 |
165 | eqid | ⊢ ; 1 9 = ; 1 9 | |
166 | 24 2 2 2 31 75 30 138 | decadd | ⊢ ( 1 + ; 1 1 ) = ; 1 2 |
167 | 76 | mulid1i | ⊢ ( 9 · 1 ) = 9 |
168 | 167 | oveq1i | ⊢ ( ( 9 · 1 ) + 2 ) = ( 9 + 2 ) |
169 | 168 84 | eqtri | ⊢ ( ( 9 · 1 ) + 2 ) = ; 1 1 |
170 | 2 71 2 25 165 166 2 2 2 141 169 | decmac | ⊢ ( ( ; 1 9 · 1 ) + ( 1 + ; 1 1 ) ) = ; 3 1 |
171 | 1 | dec0h | ⊢ 3 = ; 0 3 |
172 | 6cn | ⊢ 6 ∈ ℂ | |
173 | 172 | mulid2i | ⊢ ( 1 · 6 ) = 6 |
174 | 173 109 | oveq12i | ⊢ ( ( 1 · 6 ) + ( 0 + 5 ) ) = ( 6 + 5 ) |
175 | 174 112 | eqtri | ⊢ ( ( 1 · 6 ) + ( 0 + 5 ) ) = ; 1 1 |
176 | 9t6e54 | ⊢ ( 9 · 6 ) = ; 5 4 | |
177 | 4p3e7 | ⊢ ( 4 + 3 ) = 7 | |
178 | 21 7 1 176 177 | decaddi | ⊢ ( ( 9 · 6 ) + 3 ) = ; 5 7 |
179 | 2 71 24 1 165 171 151 8 21 175 178 | decmac | ⊢ ( ( ; 1 9 · 6 ) + 3 ) = ; ; 1 1 7 |
180 | 2 151 2 1 163 108 164 8 74 170 179 | decma2c | ⊢ ( ( ; 1 9 · ; 1 6 ) + ; 1 3 ) = ; ; 3 1 7 |
181 | 3lt9 | ⊢ 3 < 9 | |
182 | 2 1 70 181 | declt | ⊢ ; 1 3 < ; 1 9 |
183 | 161 162 102 180 182 | ndvdsi | ⊢ ¬ ; 1 9 ∥ ; ; 3 1 7 |
184 | 25 19 | decnncl | ⊢ ; 2 3 ∈ ℕ |
185 | 102 | nnnn0i | ⊢ ; 1 3 ∈ ℕ0 |
186 | 8nn | ⊢ 8 ∈ ℕ | |
187 | 2 186 | decnncl | ⊢ ; 1 8 ∈ ℕ |
188 | 25 1 | deccl | ⊢ ; 2 3 ∈ ℕ0 |
189 | eqid | ⊢ ; 2 3 = ; 2 3 | |
190 | 7p1e8 | ⊢ ( 7 + 1 ) = 8 | |
191 | 142 29 190 | addcomli | ⊢ ( 1 + 7 ) = 8 |
192 | 6 | dec0h | ⊢ 8 = ; 0 8 |
193 | 191 192 | eqtri | ⊢ ( 1 + 7 ) = ; 0 8 |
194 | 79 | mulid1i | ⊢ ( 2 · 1 ) = 2 |
195 | 194 30 | oveq12i | ⊢ ( ( 2 · 1 ) + ( 0 + 1 ) ) = ( 2 + 1 ) |
196 | 195 59 | eqtri | ⊢ ( ( 2 · 1 ) + ( 0 + 1 ) ) = 3 |
197 | 34 | oveq1i | ⊢ ( ( 3 · 1 ) + 8 ) = ( 3 + 8 ) |
198 | 88 33 60 | addcomli | ⊢ ( 3 + 8 ) = ; 1 1 |
199 | 197 198 | eqtri | ⊢ ( ( 3 · 1 ) + 8 ) = ; 1 1 |
200 | 25 1 24 6 189 193 2 2 2 196 199 | decmac | ⊢ ( ( ; 2 3 · 1 ) + ( 1 + 7 ) ) = ; 3 1 |
201 | 33 79 16 | mulcomli | ⊢ ( 2 · 3 ) = 6 |
202 | 201 30 | oveq12i | ⊢ ( ( 2 · 3 ) + ( 0 + 1 ) ) = ( 6 + 1 ) |
203 | 202 152 | eqtri | ⊢ ( ( 2 · 3 ) + ( 0 + 1 ) ) = 7 |
204 | 3t3e9 | ⊢ ( 3 · 3 ) = 9 | |
205 | 204 | oveq1i | ⊢ ( ( 3 · 3 ) + 8 ) = ( 9 + 8 ) |
206 | 205 94 | eqtri | ⊢ ( ( 3 · 3 ) + 8 ) = ; 1 7 |
207 | 25 1 24 6 189 192 1 8 2 203 206 | decmac | ⊢ ( ( ; 2 3 · 3 ) + 8 ) = ; 7 7 |
208 | 2 1 2 6 108 131 188 8 8 200 207 | decma2c | ⊢ ( ( ; 2 3 · ; 1 3 ) + ; 1 8 ) = ; ; 3 1 7 |
209 | 8lt10 | ⊢ 8 < ; 1 0 | |
210 | 1lt2 | ⊢ 1 < 2 | |
211 | 2 25 6 1 209 210 | decltc | ⊢ ; 1 8 < ; 2 3 |
212 | 184 185 187 208 211 | ndvdsi | ⊢ ¬ ; 2 3 ∥ ; ; 3 1 7 |
213 | 5 12 15 18 51 53 67 101 128 160 183 212 | prmlem2 | ⊢ ; ; 3 1 7 ∈ ℙ |