Description: 37 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | 37prm | ⊢ ; 3 7 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
2 | 7nn | ⊢ 7 ∈ ℕ | |
3 | 1 2 | decnncl | ⊢ ; 3 7 ∈ ℕ |
4 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
5 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
6 | 4 5 | deccl | ⊢ ; 8 4 ∈ ℕ0 |
7 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
8 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
9 | 7lt10 | ⊢ 7 < ; 1 0 | |
10 | 8nn | ⊢ 8 ∈ ℕ | |
11 | 3lt10 | ⊢ 3 < ; 1 0 | |
12 | 10 5 1 11 | declti | ⊢ 3 < ; 8 4 |
13 | 1 6 7 8 9 12 | decltc | ⊢ ; 3 7 < ; ; 8 4 1 |
14 | 3nn | ⊢ 3 ∈ ℕ | |
15 | 1lt10 | ⊢ 1 < ; 1 0 | |
16 | 14 7 8 15 | declti | ⊢ 1 < ; 3 7 |
17 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
18 | df-7 | ⊢ 7 = ( 6 + 1 ) | |
19 | 1 1 17 18 | dec2dvds | ⊢ ¬ 2 ∥ ; 3 7 |
20 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
21 | 8 20 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
22 | 1nn | ⊢ 1 ∈ ℕ | |
23 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
24 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
25 | eqid | ⊢ ; 1 2 = ; 1 2 | |
26 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
27 | 3cn | ⊢ 3 ∈ ℂ | |
28 | 27 | mulid1i | ⊢ ( 3 · 1 ) = 3 |
29 | 28 | oveq1i | ⊢ ( ( 3 · 1 ) + 0 ) = ( 3 + 0 ) |
30 | 27 | addid1i | ⊢ ( 3 + 0 ) = 3 |
31 | 29 30 | eqtri | ⊢ ( ( 3 · 1 ) + 0 ) = 3 |
32 | 23 | dec0h | ⊢ 6 = ; 0 6 |
33 | 17 32 | eqtri | ⊢ ( 3 · 2 ) = ; 0 6 |
34 | 1 8 20 25 23 26 31 33 | decmul2c | ⊢ ( 3 · ; 1 2 ) = ; 3 6 |
35 | 1 23 24 34 | decsuc | ⊢ ( ( 3 · ; 1 2 ) + 1 ) = ; 3 7 |
36 | 1lt3 | ⊢ 1 < 3 | |
37 | 14 21 22 35 36 | ndvdsi | ⊢ ¬ 3 ∥ ; 3 7 |
38 | 2nn | ⊢ 2 ∈ ℕ | |
39 | 2lt5 | ⊢ 2 < 5 | |
40 | 5p2e7 | ⊢ ( 5 + 2 ) = 7 | |
41 | 1 38 39 40 | dec5dvds2 | ⊢ ¬ 5 ∥ ; 3 7 |
42 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
43 | 7t5e35 | ⊢ ( 7 · 5 ) = ; 3 5 | |
44 | 1 42 20 43 40 | decaddi | ⊢ ( ( 7 · 5 ) + 2 ) = ; 3 7 |
45 | 2lt7 | ⊢ 2 < 7 | |
46 | 2 42 38 44 45 | ndvdsi | ⊢ ¬ 7 ∥ ; 3 7 |
47 | 8 22 | decnncl | ⊢ ; 1 1 ∈ ℕ |
48 | 4nn | ⊢ 4 ∈ ℕ | |
49 | eqid | ⊢ ; 1 1 = ; 1 1 | |
50 | 27 | mulid2i | ⊢ ( 1 · 3 ) = 3 |
51 | 50 | oveq1i | ⊢ ( ( 1 · 3 ) + 4 ) = ( 3 + 4 ) |
52 | 48 | nncni | ⊢ 4 ∈ ℂ |
53 | 4p3e7 | ⊢ ( 4 + 3 ) = 7 | |
54 | 52 27 53 | addcomli | ⊢ ( 3 + 4 ) = 7 |
55 | 51 54 | eqtri | ⊢ ( ( 1 · 3 ) + 4 ) = 7 |
56 | 8 8 5 49 1 50 55 | decrmanc | ⊢ ( ( ; 1 1 · 3 ) + 4 ) = ; 3 7 |
57 | 4lt10 | ⊢ 4 < ; 1 0 | |
58 | 22 8 5 57 | declti | ⊢ 4 < ; 1 1 |
59 | 47 1 48 56 58 | ndvdsi | ⊢ ¬ ; 1 1 ∥ ; 3 7 |
60 | 8 14 | decnncl | ⊢ ; 1 3 ∈ ℕ |
61 | eqid | ⊢ ; 1 3 = ; 1 3 | |
62 | 2cn | ⊢ 2 ∈ ℂ | |
63 | 62 | mulid2i | ⊢ ( 1 · 2 ) = 2 |
64 | 20 8 1 61 63 17 | decmul1 | ⊢ ( ; 1 3 · 2 ) = ; 2 6 |
65 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
66 | 20 23 8 8 64 49 65 24 | decadd | ⊢ ( ( ; 1 3 · 2 ) + ; 1 1 ) = ; 3 7 |
67 | 8 8 14 36 | declt | ⊢ ; 1 1 < ; 1 3 |
68 | 60 20 47 66 67 | ndvdsi | ⊢ ¬ ; 1 3 ∥ ; 3 7 |
69 | 8 2 | decnncl | ⊢ ; 1 7 ∈ ℕ |
70 | eqid | ⊢ ; 1 7 = ; 1 7 | |
71 | 1 | dec0h | ⊢ 3 = ; 0 3 |
72 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
73 | 63 72 | oveq12i | ⊢ ( ( 1 · 2 ) + ( 0 + 1 ) ) = ( 2 + 1 ) |
74 | 73 65 | eqtri | ⊢ ( ( 1 · 2 ) + ( 0 + 1 ) ) = 3 |
75 | 7t2e14 | ⊢ ( 7 · 2 ) = ; 1 4 | |
76 | 8 5 1 75 53 | decaddi | ⊢ ( ( 7 · 2 ) + 3 ) = ; 1 7 |
77 | 8 7 26 1 70 71 20 7 8 74 76 | decmac | ⊢ ( ( ; 1 7 · 2 ) + 3 ) = ; 3 7 |
78 | 22 7 1 11 | declti | ⊢ 3 < ; 1 7 |
79 | 69 20 14 77 78 | ndvdsi | ⊢ ¬ ; 1 7 ∥ ; 3 7 |
80 | 9nn | ⊢ 9 ∈ ℕ | |
81 | 8 80 | decnncl | ⊢ ; 1 9 ∈ ℕ |
82 | 8 10 | decnncl | ⊢ ; 1 8 ∈ ℕ |
83 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
84 | 81 | nncni | ⊢ ; 1 9 ∈ ℂ |
85 | 84 | mulid1i | ⊢ ( ; 1 9 · 1 ) = ; 1 9 |
86 | eqid | ⊢ ; 1 8 = ; 1 8 | |
87 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
88 | 87 | oveq1i | ⊢ ( ( 1 + 1 ) + 1 ) = ( 2 + 1 ) |
89 | 88 65 | eqtri | ⊢ ( ( 1 + 1 ) + 1 ) = 3 |
90 | 9p8e17 | ⊢ ( 9 + 8 ) = ; 1 7 | |
91 | 8 83 8 4 85 86 89 7 90 | decaddc | ⊢ ( ( ; 1 9 · 1 ) + ; 1 8 ) = ; 3 7 |
92 | 8lt9 | ⊢ 8 < 9 | |
93 | 8 4 80 92 | declt | ⊢ ; 1 8 < ; 1 9 |
94 | 81 8 82 91 93 | ndvdsi | ⊢ ¬ ; 1 9 ∥ ; 3 7 |
95 | 20 14 | decnncl | ⊢ ; 2 3 ∈ ℕ |
96 | 8 48 | decnncl | ⊢ ; 1 4 ∈ ℕ |
97 | 95 | nncni | ⊢ ; 2 3 ∈ ℂ |
98 | 97 | mulid1i | ⊢ ( ; 2 3 · 1 ) = ; 2 3 |
99 | eqid | ⊢ ; 1 4 = ; 1 4 | |
100 | 20 1 8 5 98 99 65 54 | decadd | ⊢ ( ( ; 2 3 · 1 ) + ; 1 4 ) = ; 3 7 |
101 | 1lt2 | ⊢ 1 < 2 | |
102 | 8 20 5 1 57 101 | decltc | ⊢ ; 1 4 < ; 2 3 |
103 | 95 8 96 100 102 | ndvdsi | ⊢ ¬ ; 2 3 ∥ ; 3 7 |
104 | 3 13 16 19 37 41 46 59 68 79 94 103 | prmlem2 | ⊢ ; 3 7 ∈ ℙ |