Metamath Proof Explorer


Theorem 37prm

Description: 37 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 37prm 3 7 ∈ ℙ

Proof

Step Hyp Ref Expression
1 3nn0 3 ∈ ℕ0
2 7nn 7 ∈ ℕ
3 1 2 decnncl 3 7 ∈ ℕ
4 8nn0 8 ∈ ℕ0
5 4nn0 4 ∈ ℕ0
6 4 5 deccl 8 4 ∈ ℕ0
7 7nn0 7 ∈ ℕ0
8 1nn0 1 ∈ ℕ0
9 7lt10 7 < 1 0
10 8nn 8 ∈ ℕ
11 3lt10 3 < 1 0
12 10 5 1 11 declti 3 < 8 4
13 1 6 7 8 9 12 decltc 3 7 < 8 4 1
14 3nn 3 ∈ ℕ
15 1lt10 1 < 1 0
16 14 7 8 15 declti 1 < 3 7
17 3t2e6 ( 3 · 2 ) = 6
18 df-7 7 = ( 6 + 1 )
19 1 1 17 18 dec2dvds ¬ 2 ∥ 3 7
20 2nn0 2 ∈ ℕ0
21 8 20 deccl 1 2 ∈ ℕ0
22 1nn 1 ∈ ℕ
23 6nn0 6 ∈ ℕ0
24 6p1e7 ( 6 + 1 ) = 7
25 eqid 1 2 = 1 2
26 0nn0 0 ∈ ℕ0
27 3cn 3 ∈ ℂ
28 27 mulid1i ( 3 · 1 ) = 3
29 28 oveq1i ( ( 3 · 1 ) + 0 ) = ( 3 + 0 )
30 27 addid1i ( 3 + 0 ) = 3
31 29 30 eqtri ( ( 3 · 1 ) + 0 ) = 3
32 23 dec0h 6 = 0 6
33 17 32 eqtri ( 3 · 2 ) = 0 6
34 1 8 20 25 23 26 31 33 decmul2c ( 3 · 1 2 ) = 3 6
35 1 23 24 34 decsuc ( ( 3 · 1 2 ) + 1 ) = 3 7
36 1lt3 1 < 3
37 14 21 22 35 36 ndvdsi ¬ 3 ∥ 3 7
38 2nn 2 ∈ ℕ
39 2lt5 2 < 5
40 5p2e7 ( 5 + 2 ) = 7
41 1 38 39 40 dec5dvds2 ¬ 5 ∥ 3 7
42 5nn0 5 ∈ ℕ0
43 7t5e35 ( 7 · 5 ) = 3 5
44 1 42 20 43 40 decaddi ( ( 7 · 5 ) + 2 ) = 3 7
45 2lt7 2 < 7
46 2 42 38 44 45 ndvdsi ¬ 7 ∥ 3 7
47 8 22 decnncl 1 1 ∈ ℕ
48 4nn 4 ∈ ℕ
49 eqid 1 1 = 1 1
50 27 mulid2i ( 1 · 3 ) = 3
51 50 oveq1i ( ( 1 · 3 ) + 4 ) = ( 3 + 4 )
52 48 nncni 4 ∈ ℂ
53 4p3e7 ( 4 + 3 ) = 7
54 52 27 53 addcomli ( 3 + 4 ) = 7
55 51 54 eqtri ( ( 1 · 3 ) + 4 ) = 7
56 8 8 5 49 1 50 55 decrmanc ( ( 1 1 · 3 ) + 4 ) = 3 7
57 4lt10 4 < 1 0
58 22 8 5 57 declti 4 < 1 1
59 47 1 48 56 58 ndvdsi ¬ 1 1 ∥ 3 7
60 8 14 decnncl 1 3 ∈ ℕ
61 eqid 1 3 = 1 3
62 2cn 2 ∈ ℂ
63 62 mulid2i ( 1 · 2 ) = 2
64 20 8 1 61 63 17 decmul1 ( 1 3 · 2 ) = 2 6
65 2p1e3 ( 2 + 1 ) = 3
66 20 23 8 8 64 49 65 24 decadd ( ( 1 3 · 2 ) + 1 1 ) = 3 7
67 8 8 14 36 declt 1 1 < 1 3
68 60 20 47 66 67 ndvdsi ¬ 1 3 ∥ 3 7
69 8 2 decnncl 1 7 ∈ ℕ
70 eqid 1 7 = 1 7
71 1 dec0h 3 = 0 3
72 0p1e1 ( 0 + 1 ) = 1
73 63 72 oveq12i ( ( 1 · 2 ) + ( 0 + 1 ) ) = ( 2 + 1 )
74 73 65 eqtri ( ( 1 · 2 ) + ( 0 + 1 ) ) = 3
75 7t2e14 ( 7 · 2 ) = 1 4
76 8 5 1 75 53 decaddi ( ( 7 · 2 ) + 3 ) = 1 7
77 8 7 26 1 70 71 20 7 8 74 76 decmac ( ( 1 7 · 2 ) + 3 ) = 3 7
78 22 7 1 11 declti 3 < 1 7
79 69 20 14 77 78 ndvdsi ¬ 1 7 ∥ 3 7
80 9nn 9 ∈ ℕ
81 8 80 decnncl 1 9 ∈ ℕ
82 8 10 decnncl 1 8 ∈ ℕ
83 9nn0 9 ∈ ℕ0
84 81 nncni 1 9 ∈ ℂ
85 84 mulid1i ( 1 9 · 1 ) = 1 9
86 eqid 1 8 = 1 8
87 1p1e2 ( 1 + 1 ) = 2
88 87 oveq1i ( ( 1 + 1 ) + 1 ) = ( 2 + 1 )
89 88 65 eqtri ( ( 1 + 1 ) + 1 ) = 3
90 9p8e17 ( 9 + 8 ) = 1 7
91 8 83 8 4 85 86 89 7 90 decaddc ( ( 1 9 · 1 ) + 1 8 ) = 3 7
92 8lt9 8 < 9
93 8 4 80 92 declt 1 8 < 1 9
94 81 8 82 91 93 ndvdsi ¬ 1 9 ∥ 3 7
95 20 14 decnncl 2 3 ∈ ℕ
96 8 48 decnncl 1 4 ∈ ℕ
97 95 nncni 2 3 ∈ ℂ
98 97 mulid1i ( 2 3 · 1 ) = 2 3
99 eqid 1 4 = 1 4
100 20 1 8 5 98 99 65 54 decadd ( ( 2 3 · 1 ) + 1 4 ) = 3 7
101 1lt2 1 < 2
102 8 20 5 1 57 101 decltc 1 4 < 2 3
103 95 8 96 100 102 ndvdsi ¬ 2 3 ∥ 3 7
104 3 13 16 19 37 41 46 59 68 79 94 103 prmlem2 3 7 ∈ ℙ