Metamath Proof Explorer


Theorem 3ad2antl2

Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007)

Ref Expression
Hypothesis 3ad2antl.1 ( ( 𝜑𝜒 ) → 𝜃 )
Assertion 3ad2antl2 ( ( ( 𝜓𝜑𝜏 ) ∧ 𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 3ad2antl.1 ( ( 𝜑𝜒 ) → 𝜃 )
2 1 adantlr ( ( ( 𝜑𝜏 ) ∧ 𝜒 ) → 𝜃 )
3 2 3adantl1 ( ( ( 𝜓𝜑𝜏 ) ∧ 𝜒 ) → 𝜃 )