Metamath Proof Explorer


Theorem 3adant1r

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Hypothesis ad4ant3.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion 3adant1r ( ( ( 𝜑𝜏 ) ∧ 𝜓𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 ad4ant3.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
2 simpl ( ( 𝜑𝜏 ) → 𝜑 )
3 2 1 syl3an1 ( ( ( 𝜑𝜏 ) ∧ 𝜓𝜒 ) → 𝜃 )