Metamath Proof Explorer


Theorem 3adant3r3

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008)

Ref Expression
Hypothesis ad4ant3.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion 3adant3r3 ( ( 𝜑 ∧ ( 𝜓𝜒𝜏 ) ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 ad4ant3.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
2 1 3expb ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
3 2 3adantr3 ( ( 𝜑 ∧ ( 𝜓𝜒𝜏 ) ) → 𝜃 )