Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3adantl.1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) | |
Assertion | 3adantl2 | ⊢ ( ( ( 𝜑 ∧ 𝜏 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3adantl.1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) | |
2 | 3simpb | ⊢ ( ( 𝜑 ∧ 𝜏 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) | |
3 | 2 1 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝜏 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) |