Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3adantl.1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) | |
| Assertion | 3adantl3 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜏 ) ∧ 𝜒 ) → 𝜃 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3adantl.1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) | |
| 2 | 3simpa | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜏 ) → ( 𝜑 ∧ 𝜓 ) ) | |
| 3 | 2 1 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜏 ) ∧ 𝜒 ) → 𝜃 ) |