Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3adantr.1 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | |
| Assertion | 3adantr2 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜏 ∧ 𝜒 ) ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adantr.1 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | |
| 2 | 3simpb | ⊢ ( ( 𝜓 ∧ 𝜏 ∧ 𝜒 ) → ( 𝜓 ∧ 𝜒 ) ) | |
| 3 | 2 1 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜏 ∧ 𝜒 ) ) → 𝜃 ) |