Metamath Proof Explorer


Theorem 3an1rs

Description: Swap conjuncts. (Contributed by NM, 16-Dec-2007) (Proof shortened by Wolf Lammen, 14-Apr-2022)

Ref Expression
Hypothesis 3an1rs.1 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜏 )
Assertion 3an1rs ( ( ( 𝜑𝜓𝜃 ) ∧ 𝜒 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 3an1rs.1 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜏 )
2 1 3exp1 ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) ) )
3 2 com34 ( 𝜑 → ( 𝜓 → ( 𝜃 → ( 𝜒𝜏 ) ) ) )
4 3 3imp1 ( ( ( 𝜑𝜓𝜃 ) ∧ 𝜒 ) → 𝜏 )