Description: Swap conjuncts. (Contributed by NM, 16-Dec-2007) (Proof shortened by Wolf Lammen, 14-Apr-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3an1rs.1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
Assertion | 3an1rs | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜃 ) ∧ 𝜒 ) → 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3an1rs.1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
2 | 1 | 3exp1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) ) ) |
3 | 2 | com34 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜃 → ( 𝜒 → 𝜏 ) ) ) ) |
4 | 3 | 3imp1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜃 ) ∧ 𝜒 ) → 𝜏 ) |