Description: Associative law for four conjunctions with a triple conjunction. (Contributed by Alexander van der Vekens, 24-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3an4anass | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
| 2 | 1 | anbi1i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ) |
| 3 | anass | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) ) |