Metamath Proof Explorer


Theorem 3an6

Description: Analogue of an4 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011) (Proof shortened by Andrew Salmon, 25-May-2011)

Ref Expression
Assertion 3an6 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ∧ ( 𝜏𝜂 ) ) ↔ ( ( 𝜑𝜒𝜏 ) ∧ ( 𝜓𝜃𝜂 ) ) )

Proof

Step Hyp Ref Expression
1 an6 ( ( ( 𝜑𝜒𝜏 ) ∧ ( 𝜓𝜃𝜂 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ∧ ( 𝜏𝜂 ) ) )
2 1 bicomi ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ∧ ( 𝜏𝜂 ) ) ↔ ( ( 𝜑𝜒𝜏 ) ∧ ( 𝜓𝜃𝜂 ) ) )