Metamath Proof Explorer


Theorem 3anan12

Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Andrew Salmon, 14-Jun-2011) (Revised to shorten 3ancoma by Wolf Lammen, 5-Jun-2022.)

Ref Expression
Assertion 3anan12 ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜓 ∧ ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 3anass ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
2 an12 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ↔ ( 𝜓 ∧ ( 𝜑𝜒 ) ) )
3 1 2 bitri ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜓 ∧ ( 𝜑𝜒 ) ) )