Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 25-Jul-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3anandirs.1 | ⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜃 ) ) → 𝜏 ) | |
Assertion | 3anandirs | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anandirs.1 | ⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜃 ) ) → 𝜏 ) | |
2 | simpl1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜑 ) | |
3 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜃 ) | |
4 | simpl2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜓 ) | |
5 | simpl3 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜒 ) | |
6 | 2 3 4 3 5 3 1 | syl222anc | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |