Metamath Proof Explorer


Theorem 3anandirs

Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 25-Jul-2006)

Ref Expression
Hypothesis 3anandirs.1 ( ( ( 𝜑𝜃 ) ∧ ( 𝜓𝜃 ) ∧ ( 𝜒𝜃 ) ) → 𝜏 )
Assertion 3anandirs ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 3anandirs.1 ( ( ( 𝜑𝜃 ) ∧ ( 𝜓𝜃 ) ∧ ( 𝜒𝜃 ) ) → 𝜏 )
2 simpl1 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜑 )
3 simpr ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜃 )
4 simpl2 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜓 )
5 simpl3 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜒 )
6 2 3 4 3 5 3 1 syl222anc ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜏 )