Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3anandis.1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ) → 𝜏 ) | |
| Assertion | 3anandis | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anandis.1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ) → 𝜏 ) | |
| 2 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) → 𝜑 ) | |
| 3 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) → 𝜓 ) | |
| 4 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) → 𝜒 ) | |
| 5 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) → 𝜃 ) | |
| 6 | 2 3 2 4 2 5 1 | syl222anc | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) → 𝜏 ) |