Metamath Proof Explorer


Theorem 3anandis

Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007)

Ref Expression
Hypothesis 3anandis.1 ( ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ∧ ( 𝜑𝜃 ) ) → 𝜏 )
Assertion 3anandis ( ( 𝜑 ∧ ( 𝜓𝜒𝜃 ) ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 3anandis.1 ( ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ∧ ( 𝜑𝜃 ) ) → 𝜏 )
2 simpl ( ( 𝜑 ∧ ( 𝜓𝜒𝜃 ) ) → 𝜑 )
3 simpr1 ( ( 𝜑 ∧ ( 𝜓𝜒𝜃 ) ) → 𝜓 )
4 simpr2 ( ( 𝜑 ∧ ( 𝜓𝜒𝜃 ) ) → 𝜒 )
5 simpr3 ( ( 𝜑 ∧ ( 𝜓𝜒𝜃 ) ) → 𝜃 )
6 2 3 2 4 2 5 1 syl222anc ( ( 𝜑 ∧ ( 𝜓𝜒𝜃 ) ) → 𝜏 )