Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3anassrs.1 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) → 𝜏 ) | |
Assertion | 3anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anassrs.1 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) → 𝜏 ) | |
2 | 1 | 3exp2 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) ) ) |
3 | 2 | imp41 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |