Metamath Proof Explorer


Theorem 3anassrs

Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypothesis 3anassrs.1 ( ( 𝜑 ∧ ( 𝜓𝜒𝜃 ) ) → 𝜏 )
Assertion 3anassrs ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 3anassrs.1 ( ( 𝜑 ∧ ( 𝜓𝜒𝜃 ) ) → 𝜏 )
2 1 3exp2 ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) ) )
3 2 imp41 ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )