Metamath Proof Explorer


Theorem 3anbi123i

Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994)

Ref Expression
Hypotheses bi3.1 ( 𝜑𝜓 )
bi3.2 ( 𝜒𝜃 )
bi3.3 ( 𝜏𝜂 )
Assertion 3anbi123i ( ( 𝜑𝜒𝜏 ) ↔ ( 𝜓𝜃𝜂 ) )

Proof

Step Hyp Ref Expression
1 bi3.1 ( 𝜑𝜓 )
2 bi3.2 ( 𝜒𝜃 )
3 bi3.3 ( 𝜏𝜂 )
4 1 2 anbi12i ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) )
5 4 3 anbi12i ( ( ( 𝜑𝜒 ) ∧ 𝜏 ) ↔ ( ( 𝜓𝜃 ) ∧ 𝜂 ) )
6 df-3an ( ( 𝜑𝜒𝜏 ) ↔ ( ( 𝜑𝜒 ) ∧ 𝜏 ) )
7 df-3an ( ( 𝜓𝜃𝜂 ) ↔ ( ( 𝜓𝜃 ) ∧ 𝜂 ) )
8 5 6 7 3bitr4i ( ( 𝜑𝜒𝜏 ) ↔ ( 𝜓𝜃𝜂 ) )