Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bi3.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| bi3.2 | ⊢ ( 𝜒 ↔ 𝜃 ) | ||
| bi3.3 | ⊢ ( 𝜏 ↔ 𝜂 ) | ||
| Assertion | 3anbi123i | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) ↔ ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | bi3.2 | ⊢ ( 𝜒 ↔ 𝜃 ) | |
| 3 | bi3.3 | ⊢ ( 𝜏 ↔ 𝜂 ) | |
| 4 | 1 2 | anbi12i | ⊢ ( ( 𝜑 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜃 ) ) |
| 5 | 4 3 | anbi12i | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜏 ) ↔ ( ( 𝜓 ∧ 𝜃 ) ∧ 𝜂 ) ) |
| 6 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜏 ) ) | |
| 7 | df-3an | ⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) ↔ ( ( 𝜓 ∧ 𝜃 ) ∧ 𝜂 ) ) | |
| 8 | 5 6 7 | 3bitr4i | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) ↔ ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) ) |