Metamath Proof Explorer
Description: Deduction conjoining and adding a conjunct to equivalences.
(Contributed by NM, 8-Sep-2006)
|
|
Ref |
Expression |
|
Hypotheses |
3anbi12d.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
3anbi12d.2 |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |
|
Assertion |
3anbi23d |
⊢ ( 𝜑 → ( ( 𝜂 ∧ 𝜓 ∧ 𝜃 ) ↔ ( 𝜂 ∧ 𝜒 ∧ 𝜏 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3anbi12d.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
3anbi12d.2 |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |
3 |
|
biidd |
⊢ ( 𝜑 → ( 𝜂 ↔ 𝜂 ) ) |
4 |
3 1 2
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝜂 ∧ 𝜓 ∧ 𝜃 ) ↔ ( 𝜂 ∧ 𝜒 ∧ 𝜏 ) ) ) |