Metamath Proof Explorer


Theorem 3anbi2d

Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006)

Ref Expression
Hypothesis 3anbi1d.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion 3anbi2d ( 𝜑 → ( ( 𝜃𝜓𝜏 ) ↔ ( 𝜃𝜒𝜏 ) ) )

Proof

Step Hyp Ref Expression
1 3anbi1d.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 biidd ( 𝜑 → ( 𝜃𝜃 ) )
3 2 1 3anbi12d ( 𝜑 → ( ( 𝜃𝜓𝜏 ) ↔ ( 𝜃𝜒𝜏 ) ) )