Metamath Proof Explorer


Theorem 3anbi2i

Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006)

Ref Expression
Hypothesis 3anbi1i.1 ( 𝜑𝜓 )
Assertion 3anbi2i ( ( 𝜒𝜑𝜃 ) ↔ ( 𝜒𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 3anbi1i.1 ( 𝜑𝜓 )
2 biid ( 𝜒𝜒 )
3 biid ( 𝜃𝜃 )
4 2 1 3 3anbi123i ( ( 𝜒𝜑𝜃 ) ↔ ( 𝜒𝜓𝜃 ) )