Metamath Proof Explorer


Theorem 3ancomb

Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994) (Revised to shorten 3anrot by Wolf Lammen, 9-Jun-2022.)

Ref Expression
Assertion 3ancomb ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑𝜒𝜓 ) )

Proof

Step Hyp Ref Expression
1 df-3an ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
2 3anan32 ( ( 𝜑𝜒𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
3 1 2 bitr4i ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑𝜒𝜓 ) )