Description: Idempotent law for conjunction. (Contributed by Peter Mazsa, 17-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | 3anidm | ⊢ ( ( 𝜑 ∧ 𝜑 ∧ 𝜑 ) ↔ 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜑 ∧ 𝜑 ) ↔ ( ( 𝜑 ∧ 𝜑 ) ∧ 𝜑 ) ) | |
2 | anabs1 | ⊢ ( ( ( 𝜑 ∧ 𝜑 ) ∧ 𝜑 ) ↔ ( 𝜑 ∧ 𝜑 ) ) | |
3 | anidm | ⊢ ( ( 𝜑 ∧ 𝜑 ) ↔ 𝜑 ) | |
4 | 1 2 3 | 3bitri | ⊢ ( ( 𝜑 ∧ 𝜑 ∧ 𝜑 ) ↔ 𝜑 ) |