Metamath Proof Explorer


Theorem 3anidm

Description: Idempotent law for conjunction. (Contributed by Peter Mazsa, 17-Oct-2023)

Ref Expression
Assertion 3anidm ( ( 𝜑𝜑𝜑 ) ↔ 𝜑 )

Proof

Step Hyp Ref Expression
1 df-3an ( ( 𝜑𝜑𝜑 ) ↔ ( ( 𝜑𝜑 ) ∧ 𝜑 ) )
2 anabs1 ( ( ( 𝜑𝜑 ) ∧ 𝜑 ) ↔ ( 𝜑𝜑 ) )
3 anidm ( ( 𝜑𝜑 ) ↔ 𝜑 )
4 1 2 3 3bitri ( ( 𝜑𝜑𝜑 ) ↔ 𝜑 )