Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3anidm12.1 | ⊢ ( ( 𝜑 ∧ 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
Assertion | 3anidm12 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm12.1 | ⊢ ( ( 𝜑 ∧ 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
2 | 1 | 3expib | ⊢ ( 𝜑 → ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ) |
3 | 2 | anabsi5 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |