Metamath Proof Explorer


Theorem 3anidm12

Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008)

Ref Expression
Hypothesis 3anidm12.1 ( ( 𝜑𝜑𝜓 ) → 𝜒 )
Assertion 3anidm12 ( ( 𝜑𝜓 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 3anidm12.1 ( ( 𝜑𝜑𝜓 ) → 𝜒 )
2 1 3expib ( 𝜑 → ( ( 𝜑𝜓 ) → 𝜒 ) )
3 2 anabsi5 ( ( 𝜑𝜓 ) → 𝜒 )