Metamath Proof Explorer


Theorem 3anidm12p2

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis 3anidm12p2.1 ( ( 𝜓𝜑𝜑 ) → 𝜒 )
Assertion 3anidm12p2 ( ( 𝜑𝜓 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 3anidm12p2.1 ( ( 𝜓𝜑𝜑 ) → 𝜒 )
2 3anrot ( ( 𝜓𝜑𝜑 ) ↔ ( 𝜑𝜑𝜓 ) )
3 2 1 sylbir ( ( 𝜑𝜑𝜓 ) → 𝜒 )
4 3 3anidm12 ( ( 𝜑𝜓 ) → 𝜒 )