Metamath Proof Explorer


Theorem 3anidm23

Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007)

Ref Expression
Hypothesis 3anidm23.1 ( ( 𝜑𝜓𝜓 ) → 𝜒 )
Assertion 3anidm23 ( ( 𝜑𝜓 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 3anidm23.1 ( ( 𝜑𝜓𝜓 ) → 𝜒 )
2 1 3expa ( ( ( 𝜑𝜓 ) ∧ 𝜓 ) → 𝜒 )
3 2 anabss3 ( ( 𝜑𝜓 ) → 𝜒 )