Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3anim123d.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 3anim123d.2 | ⊢ ( 𝜑 → ( 𝜃 → 𝜏 ) ) | ||
| 3anim123d.3 | ⊢ ( 𝜑 → ( 𝜂 → 𝜁 ) ) | ||
| Assertion | 3anim123d | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → ( 𝜒 ∧ 𝜏 ∧ 𝜁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anim123d.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | 3anim123d.2 | ⊢ ( 𝜑 → ( 𝜃 → 𝜏 ) ) | |
| 3 | 3anim123d.3 | ⊢ ( 𝜑 → ( 𝜂 → 𝜁 ) ) | |
| 4 | 1 2 | anim12d | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜃 ) → ( 𝜒 ∧ 𝜏 ) ) ) |
| 5 | 4 3 | anim12d | ⊢ ( 𝜑 → ( ( ( 𝜓 ∧ 𝜃 ) ∧ 𝜂 ) → ( ( 𝜒 ∧ 𝜏 ) ∧ 𝜁 ) ) ) |
| 6 | df-3an | ⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) ↔ ( ( 𝜓 ∧ 𝜃 ) ∧ 𝜂 ) ) | |
| 7 | df-3an | ⊢ ( ( 𝜒 ∧ 𝜏 ∧ 𝜁 ) ↔ ( ( 𝜒 ∧ 𝜏 ) ∧ 𝜁 ) ) | |
| 8 | 5 6 7 | 3imtr4g | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → ( 𝜒 ∧ 𝜏 ∧ 𝜁 ) ) ) |