Metamath Proof Explorer


Theorem 3anor

Description: Triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009) (Proof shortened by Wolf Lammen, 8-Apr-2022)

Ref Expression
Assertion 3anor ( ( 𝜑𝜓𝜒 ) ↔ ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 3ianor ( ¬ ( 𝜑𝜓𝜒 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒 ) )
2 1 con1bii ( ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒 ) ↔ ( 𝜑𝜓𝜒 ) )
3 2 bicomi ( ( 𝜑𝜓𝜒 ) ↔ ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒 ) )